Microprobe Analysis in Medicine — Present Practice and Future Trends

  • John D. Shelburne
  • Victor L. Roggli
  • Peter Ingram
  • J. Allan Tucker
  • Richard W. Linton
Conference paper
Part of the Springer Series in Biophysics book series (BIOPHYSICS, volume 4)

Abstract

This paper reviews current applications of mieroprobe analysis in medicine with emphasis on medical practice as opposed to research applications. In current medical practice, mieroprobe analysis is usually accomplished on an electron microscope (EM) equipped with an energy dispersive x-ray detector (EDX). Accordingly, electron probe microanalysis (EPMA) is emphasized in this communication. However, newer technologies such as ion and laser microscopes are now being used in a few laboratories for medical studies; therefore these will be briefly considered as well. For more extensive discussions of all of these topics, the reader is directed to our recent publication (Ingram et al., 1989).

Keywords

Zirconium Dopamine Arsenic Hydrocarbon Adenoma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham JL, Burnett BR (1989) Quantitative in situ analysis of inorganic particulate burden in tissue sections — an update. Chapter 6 In: Ingram P, Shelburne JD, Roggli VL (eds) Microprobe analysis in medicine. Hemisphere Publishing Corporation, Washington, DC pp 111–131.Google Scholar
  2. Cameron IL, Smith NKR (1989) Applications of electron probe x-ray microanalysis to the study of ionic regulation of growth in normal and cancer cells. Chapter 15 In: Ingram P, Shelburne JD, and Roggli VL (eds) op cit. pp 291-301.Google Scholar
  3. Gilkey JC, Staehlin LA (1986) Advances in ultrarapid freezing for the preservation of cellular ultrastructure. J Eleetr Micros Teehn 3:177–210.CrossRefGoogle Scholar
  4. Herlong JR, LeFurgey A, Ingram P, Mandel LJ, Hawkey LA (1988) Quantitative x-ray imaging of human cystic fibrosis nasal epithelium. In: Newbury DE (Ed) Microbeam Analysis. San Francisco Press, San Francisco, pp 447–450.Google Scholar
  5. Ingram P, Shelburne JD, Roggli VL (Editors) (1989) Microprobe analysis in medicine. Hemisphere Publishing Corporation, Washington, DC.Google Scholar
  6. Iwanczyk JS, Dabrowski AJ, Huth GC, Bradley JG, Conley JM, Albee AL (1984) First use of a mercuric iodide (HgI2) energy dispersive x-ray detector in a scanning electron microscope. Scanning Electron Microscopy, 1:9–14.Google Scholar
  7. Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60: 2299–2301.PubMedCrossRefGoogle Scholar
  8. LeFurgey A, Bond M, Ingram P (1988) Frontiers in electron probe mieroanalysis: application to cell physiology. Ultra microscopy 24:185–220.Google Scholar
  9. Leong AS-Y, Disney APS, Gove DW (1982) Spallation and migration of silicone from blood-pump tubing in patients on hemodialysis. NEJM 306:135–140.PubMedCrossRefGoogle Scholar
  10. Lechene C, Warner R (1979) Electron probe analysis of liquid droplets. In: Microbeam Analysis in Biology. Leehene C, Warner R (Eds) Academic Press, New York, pp 279–296.Google Scholar
  11. Levi-Setti R, Chabala JM, Wang YL, Hallegot P (1988) High-resolution ion probe imaging and analysis. In: Newbury DE (ed) Microbeam Analysis-1988, San Francisco Press, San Francisco, pp 93–101.Google Scholar
  12. Linton RW, Musselman IH, Bryan SR (1989) Laser and ion microprobe mass spectrometry — applications to human tissues. Chapter 16 In: Ingram P, Shelburne JD, and Roggli VL (eds) op cit. pp 303–333.Google Scholar
  13. Menco BPM (1986) A survey of ultra-rapid cryofixation methods with-particular emphasis on applications to freeze-fracturing, freeze-etching, and freeze-substitution. J Eleetr Microsc Teehn 4:177–240.CrossRefGoogle Scholar
  14. Middleman ML, Geller JD (1976) Trace element analysis using x-ray excitation with an energy dispersive spectrometer on a scanning electron microscope. Scanning Electron Microsc I:171–179.Google Scholar
  15. Quinton PM (1978) SEM-EDS x-ray analysis of fluids. Scanning Electron Microscopy 2:391–397.Google Scholar
  16. Roggli VL (1989) Scanning electron microscopic analysis of mineral fibers in human lung. Chapter 5 In: Ingram P, Shelburne JD, and Roggli VL (eds) op cit. pp 97-110.Google Scholar
  17. Roinel N (1988) Quantitative x-ray analysis of biological fluids: The microdroplet technique. J Electr Micros Techn 9:45–56.CrossRefGoogle Scholar
  18. Roomans GM (1988) Quantitative x-ray mieroanalysis of biological specimens. J Eleetr Micros Techn 9:19–43.CrossRefGoogle Scholar
  19. Roomans GM (1989) Cystic fibrosis. Chapter 9 In: Ingram P, Shelburne JD, and Roggli VL (eds) op cit. pp 163-175.Google Scholar
  20. Shelburne JD, Tucker JA, Roggli VL, Ingram P (1989) Overview of applications in medicine. Chapter 3 In: Ingram P, Shelburne JD, and Roggli VL (eds) op cit. pp 55-77.Google Scholar
  21. Wroblewski J, Wroblewski R, Roomans G (1988) Low temperature techniques for x-ray mieroanalysis in pathology: alternatives to eryoultramicrotomy. J Eleetr Micros Techn 9:83–98.CrossRefGoogle Scholar
  22. Wroblewski R, Edstrom L (1989) Disorders of skeletal muscle. Chapter 12 In: Ingram P, Shelburne JD, and Roggli VL (eds) op cit. pp 219-236.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • John D. Shelburne
    • 1
  • Victor L. Roggli
    • 1
  • Peter Ingram
    • 1
    • 2
  • J. Allan Tucker
    • 1
  • Richard W. Linton
    • 1
    • 3
  1. 1.Department of PathologyDuke University and V.A. Medical Centers DurhamUSA
  2. 2.Research Triangle InstituteUSA
  3. 3.Department of ChemistryUniversity of North CarolinaChapel HillUSA

Personalised recommendations