Skip to main content

Imaging and Microanalysis by Electron Spectroscopy

  • Conference paper
Electron Probe Microanalysis

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 4))

  • 134 Accesses

Abstract

The dominant strength of electron microsopy is the ability to produce high resolution images. For stained biological specimens in bright field this means a biologically interpretable detail of about 2 nm, limited by the Niquist sampling criterion referred to the size of the heavy metal ion stain. For thin unstained specimens, a compromise is struck between enough electron exposure for good counting statistics and a sufficiently low dose to limit radiation-induced structural alterations (Rose, 1977). Here an interpretable resolution of 0.3–0.5 nm has been reached (Ottensmeyer et al., 1975; Ottensmeyer et al., 1977; Andrews & Ottensmeyer, 1982). For individual heavy atoms and for crystalline specimens in materials science, the limit is the resolving power of the objective lens (Henkelman & Ottensmeyer, 1971; Crewe et al., 1970; Uyeda et al., 1978).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson-Sharpe KM, Ottensmeyer FP (1981). Spatial resolution and detection sensitivity in microanalysis by electron energy loss selected imaging. J. Microsc. (Oxford) 122: 309–314.

    Article  CAS  Google Scholar 

  • Ahn CC, Krivanek OL (1983). EELS Atlas. Gatan Inc., Warrendale PA.

    Google Scholar 

  • Andrews DW, Ottensmeyer FP (1982). Electron microscopy of the poly-1-lysine alpha helix. Ultramicroscopy 9: 337–348.

    Article  PubMed  CAS  Google Scholar 

  • Arsenault AL, Ottensmeyer FP (1983). Quantitative spatial distribution of calcium, phosphorus and sulfur in calcifying epiphysis by high resolution spectroscopic imaging. Proc. Natl. Acad. Sci. USA 80: 1322–1326.

    Article  PubMed  CAS  Google Scholar 

  • Bauer R (1988). Electron spectroscopic imaging: An advanced technique for imaging and analysis in transmission electron mircroscopy. Meth. in Microbiol. 20:113–146.

    Article  Google Scholar 

  • Bauer HD, Scholz W (1987). An approximate deconvolution for EELS quantification of thicker samples, ultramicroscopy 23: 109–114.

    Article  Google Scholar 

  • Bazett-Jones DP, Ottensmeyer FP (1981). Phosphorus distribution in the nucleosome. Science 211: 169–170.

    Article  PubMed  CAS  Google Scholar 

  • Bazett-Jones DP, Ottensmeyer FP (1982). DNA organization in nucleosomes. Can. J. Biochem. 60: 364–370.

    Article  PubMed  CAS  Google Scholar 

  • Cheng SC (1987). Localization distance of plasmons excited by high energy electrons. Ultramicroscopy 21: 312–313.

    Article  Google Scholar 

  • Crewe AV, Wall J, Langmore J (1970). Visibility of single atoms. Science 168: 1338–1340.

    Article  PubMed  CAS  Google Scholar 

  • Egerton RF (1986). Electron spectroscopy in the electron microscope. Plenum Press, New York.

    Google Scholar 

  • Harauz G, Ottensmeyer FP (1984). Nucleosome reconstruction via phosphorus mapping. Science 226: 936–940.

    Article  PubMed  CAS  Google Scholar 

  • Henkelman RM, Ottensmeyer FP (1971). Visualization of single heavy atoms by dark field electron microscopy. Proc. Natl. Acad. Sci. USA 68: 3000–3004.

    Article  PubMed  CAS  Google Scholar 

  • Jeanguillaume C, Tence M (1987). How to obtain a thickness-independent image in a STEM. Ultramicroscopy 23: 67–76.

    Article  PubMed  CAS  Google Scholar 

  • Johnson D, Izutsu K, Cantino M, Wong J (1988). High spatial resolution spectroscopy in the elemental analysis and imaging of biological systems. Ultramicroscopy 24: 221–236.

    Article  PubMed  CAS  Google Scholar 

  • Kohl H, Rose H (1985). Theory of image formation by inelastically scattered electrons in the electron microscope. Adv. Electron. Electron Phys. 65: 173–196.

    Article  CAS  Google Scholar 

  • Korn AP, Spitnik-Elson P, Elson D, Ottensmeyer FP (1983). Specific visualization of ribosomal RNA in the intact ribosome by electron spectroscopic imaging. Eur. J. Cell. Biol. 31: 334–340.

    PubMed  CAS  Google Scholar 

  • Leapman RD, Ornberg RL (1988). Quantitative electron energy loss spectroscopy in biology, ultramicroscopy 24: 251–268.

    Article  PubMed  CAS  Google Scholar 

  • Mory C, Colliex C. (1988). Elemental analysis at the single atom detection level by processing sequences of energy filtered images. In: Electron Beam Induced Spectroscopies with High Spatial Resolution. NSF/CNRS Workshop, Aussois, France, pp. 472–481.

    Google Scholar 

  • Ottensmeyer FP, Whiting RF, Schmidt EE, Clemens RS (1975). Electron microtephroscopy of proteins: a close look at the ashes of myokinase and protamine. J. Ultrastruc. Res. 52: 193–201.

    Article  CAS  Google Scholar 

  • Ottensmeyer FP, Andrew JW, Bazett-Jones DP, Chan ASK, Hewitt J (1977). Signal to noise enhancement in dark field micrographs of vasopressin: filtering of arrays of images in reciprocal space. J. Microscopy 109: 259–268.

    Article  CAS  Google Scholar 

  • Ottensmeyer FP (1984). Energy selecting electron microscopy. In: Electron optical systems for microscopy, microanalysis and microlithography. Hren J, Sewell P, Monroe E, Lenz F (eds). SEM Inc., AMF O’Hare IL, 245–251.

    Google Scholar 

  • Ottensmeyer FP, td Andres DW, Arsenault AL, Heng YM, Simon GT, Weatherly GC (1988). Elemental imaging by electron energy loss microscopy. Scanning (in press).

    Google Scholar 

  • Reimer L, Fromm I, Rennekamp R (1988). Operation modes of electron spectroscopic imaging and electron energy loss spectroscopy in a transmission electron microscope. Ultramicroscopy 24: 339–354.

    Article  Google Scholar 

  • Rose A (1977). Vision: Human and Electronic. Plenum Press, New York, p. 15.

    Google Scholar 

  • Scheinfein M, Isaacson M (1986). Electronic and chemical analysis of fluoride interface structures at subnanometer spatial resolution. J. Vac. Sci. Technol. B4: 326–332.

    Google Scholar 

  • Shuman H, Somlyo (1987). Electron energy loss analysis of neartrace-element concentrations of calcium. ultramicroscopy 21: 23–32.

    Article  PubMed  CAS  Google Scholar 

  • Skiff WM, Carpenter RW, Lin SH, Higgs A (1988). K,L,M,N,O and P ionization cross-sections for electron energy loss spectroscopy. Ultramicroscopy 25: 47–60.

    Article  CAS  Google Scholar 

  • Somlyo AV, Shuman H, Somlyo AP (1981). Microprobe analysis of biological systems. Academic Press, New York, p. 103–26.

    Google Scholar 

  • Swyt CR, Leapman RD (1982). In: Scanning electron microscopy, Vol. 1, (ed.) Johari O, SEM Inc., AMF O’Hare IL, p. 737.

    Google Scholar 

  • Uyeda N, Fujiyoashi Y, Kobayashi T (1978). Discrimination of individual atoms in molecular images of chlorinated copper phthalocyanine. In: Electron Microscopy 1978. 9th Intnl. Congr. Electr. Microsc., Toronto, pp. 242–243.

    Google Scholar 

  • Weng X, Rez P (1988). Solid state effects on core electron cross-sections used in microanalysis. Ultramicroscopy 25: 345–48.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ottensmeyer, F.P. (1989). Imaging and Microanalysis by Electron Spectroscopy. In: Zierold, K., Hagler, H.K. (eds) Electron Probe Microanalysis. Springer Series in Biophysics, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74477-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74477-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74479-2

  • Online ISBN: 978-3-642-74477-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics