Skip to main content

The History of Electron Probe Microanalysis in Biology

  • Conference paper
Electron Probe Microanalysis

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 4))

Abstract

A systematic discussion of biological electron-probe microanalysis would examine one-by-one several aspects of the subject, including (at least) specimen preparation, specimen imaging, analytical spatial resolution, concentration limits for elemental detection, beam damage, methods of quantitative analysis and a review of the categories of biological studies and of the notable biological results (for example, see Hall, 1979.) Instead, here we shall try to trace the actual path of development of the method, a development shaped of course by the interaction of all of these aspects as the available instrumentation became ever more effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andersen CA (1967a) An introduction to the electron probe microanalyzer and its application to biology. In: Glick D (ed) Methods of biochemical analysis, vol 15. Interscience, New York, p. 147.

    Chapter  Google Scholar 

  • Andersen CA (1967b) The quality of x-ray microanalysis in the ultra-soft x-ray region. Br J Appl Physics 18:1033–1043.

    Article  CAS  Google Scholar 

  • Appleton TC (1972) “Dry” ultrathin frozen sections for electron microscopy and X-ray microanalysis: the cryostat approach. Micron 3:101–105.

    Article  Google Scholar 

  • Bahr GF, Johnson FB, Zeitler E (1965) The elementary composition of organic objects after electron irradiation. Lab Invest 14:1115–1133.

    PubMed  CAS  Google Scholar 

  • Boekestein A, Thiel F, Stols ALH, Bouw E, Stadhouders AM (1984) Surface roughness and the use of a peak to background ratio in the X-ray microanalysis of bio-organic bulk specimens. J Microsc 134:327–333.

    Article  Google Scholar 

  • Brooks EJ, Tousimis AJ, Birks, LS (1962) The distribution of calcium in the epiphyseal cartilage of the rat tibia measured with the electron probe X-ray microanalyzer. J Ultrastruct Res 7:56–60.

    Article  PubMed  CAS  Google Scholar 

  • Cobet U (1972) Quantitative electron beam analysis of biological thick tissue samples. In: Third Internat Conf on Medical Physics, Göteborg, Sweden, p. 324.

    Google Scholar 

  • Börge A, lick R, Gehring K, Mason J, Thurau K (1975) Preparation and applicability of freeze-dried sections in the microprobe analysis of biological soft tissue. J Microsc Biol Cell 22:205–214.

    Google Scholar 

  • Duncumb P (1959) The x-ray scanning microanalyzer. Br J Appl Physics 10:420–427.

    Article  CAS  Google Scholar 

  • Duncumb P (1966) Precipitation studies with EMMA-a combined electron microscope and X-ray microanalyser. In: McKinley TD et al. (eds) The electron microprobe. John Wiley & Sons, New York, p 490.

    Google Scholar 

  • Echlin P, Taylor SE (1986) The preparation and X-ray microanalysis of bulk frozen hydrated vacuolate plant tissue. J Microsc 141:329–348.

    Article  Google Scholar 

  • Egerton RF (1980a) Chemical measurements of radiation damage in organic samples at and below room temperature. Ultramicroscopy 5:521–523.

    CAS  Google Scholar 

  • Egerton RF (1980b) Measurement of radiation damage by electron energy-loss spectroscopy. J Microsc 118:389–399.

    Article  Google Scholar 

  • Forrest QG, Marshall AT (1976) Comparative X-ray microanalysis of frozen-hydrated and freeze-substituted specimens. In Ben-Shaul Y (ed) Electron microscopy 1976, vol II. Tal International, Jerusalem, p 218.

    Google Scholar 

  • Gupta BL (1976) Water movement in cells and tissues. In: Davies PS (ed) Perspectives in experimental biology, vol 1. Pergamon Press, Oxford, p 25.

    Google Scholar 

  • Gupta BL, Hall TA (1981) The x-ray microanalysis of frozen-hydrated sections in scanning electron microscopy: an evaluation. Tissue & Cell 13:623–643.

    Article  CAS  Google Scholar 

  • Gupta BL, Hall TA (1982) Electron probe X-ray microanalysis. Baker PF (ed) Techniques in cellular physiology, pub P128. Elsevier, Amsterdam, p 1.

    Google Scholar 

  • Gupta BL, Berridge MJ, Hall TA, Moreton RB (1978) Electron micraprobe and ion-selective micro-electrode studies of fluid secretion in the salivary glands of Callipbora. J Exp Biol 72:261–284.

    PubMed  CAS  Google Scholar 

  • Hall TA (1961) X-ray fluorescence analysis in biology. Science 134:449–455.

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1968) Some aspects of the microprobe analysis of biological specimens. In: Heinrich KFJ (ed) Quantitative electron microprobe analysis. National Bureau of Standards (USA), Washington DC, p 269.

    Google Scholar 

  • Hall TA (1971) The microprobe assay of chemical elements. In: Oster G (ed) Physical techniques in biological research, 2nd edn, vol 1A. Academic Press, lew York, p 157.

    Google Scholar 

  • Hall TA (1979) Biological X-ray microanalysis. J Microsc 117:145–163.

    Article  PubMed  CAS  Google Scholar 

  • Hall TA, Gupta BL (1986) EDS quantitation and application to biology. In: Joy DC et al. (eds) Principles of analytical electron microscopy. Plenum Press, New York, p 219.

    Google Scholar 

  • Hall TA, Werba P (1971) Quantitative microprobe analysis of thin specimens: continuum method. In: Proc 25th Anniversary Meeting of EMAG. Institute of Physics, Bristol, p 146.

    Google Scholar 

  • Hall TA, Hale AJ, Switsur VR (1966) Some applications of microprobe analysis in biology and medicine. In: McKinley TD et al. (eds) The electron microprobe. John Wiley & Sons, Hew York, p 805.

    Google Scholar 

  • Hall TA, Röckert HOE, Saunders RLdeCH (1972) X-ray microscopy in clinical and experimental medicine. Charles C. Thomas, Springfield.

    Google Scholar 

  • Halloran BP, Kirk RG, Spurr AR (1978) Quantitative electron probe microanalysis of biological thin sections: the use of STEM for measurement of local mass thickness. Ultramicroscopy 3:175–184.

    Article  PubMed  CAS  Google Scholar 

  • Hillier J (1943) On microanalysis by electrons. Physical Rev 64:318–319.

    Article  CAS  Google Scholar 

  • Hillier J, Baker RF (1944) Microanalysis by means of electrons. J Appl Physics 15:663–675.

    Article  CAS  Google Scholar 

  • Höhling HJ, Hall TA (1969) Elektronenstrahlmikroanalyse als quantitative histologische Methode, Die Naturwissenschaften 56:622–629.

    Article  PubMed  Google Scholar 

  • Höhling HJ, Hall TA, Boothroyd B, Cooke CJ, Duncumb P, Fitton-Jackson S (1967) Untersuchungen der Vorstadien der Knackenbildung mit Hilfe der normalen und electronenmikroskopischen electron probe X-ray microanalysis. Die Wissenschaften 54:142–143.

    Article  Google Scholar 

  • Ilyin NP, Pozsgai I (1979) Quantitative microanalysis of thin samples in the EMMA (electron microscope + microanalyxzer), Mikrochimica Acta Suppl 8:213–228.

    CAS  Google Scholar 

  • Ingram MJ, Hogben, AM (1968) Procedures for the study of biological soft tissue with the electron microprobe. In: Developments in applied spectroscopy, vol 6. Plenum Press, Hew York, p 43.

    Google Scholar 

  • Jones RT, Johnson RT, Gupta, BL, Hall TA (1979) The quantitative measurement of electrolyte elements in nuclei of maturing erythrocytes of chick embryo using electron-probe X-ray microanalysis. J Cell Sci 35:67–85.

    PubMed  CAS  Google Scholar 

  • Leapman RD, Fiori CE, Swyt CR (1984) Mass thickness determination by electron energy loss for quantitative X-ray microanalysis in biology. J. Microsc. 133:239–253.

    Article  PubMed  CAS  Google Scholar 

  • Lechene CP (1974) Electron probe microanalysis of picoliter liquid samples. In: Hall TA et al. (eds) Microprobe analysis as applied to cells and tissues. Academic Press, London, p 351.

    Google Scholar 

  • Lechene CP, Bonventre JV, Warner RR (1979) Electron probe analysis of frozen-hydrated bulk tissues. In: Lechene CP & Warner RR (eds) Microbeam analysis in biology. Academic Press, New York, p 409.

    Google Scholar 

  • Lever JD, Duncumb P (1961) The detection of intracellular iron in rat duodenal epithelium. In: Boyd JD et al (eds) Electron microscopy in anatomy. Edward Arnold, London, p 278.

    Google Scholar 

  • Linders PWJ, Hagemann P (1983) Mass determination of thin biological specimens using backscattered electrons. Ultramicroscopy 11:13–20.

    Article  PubMed  CAS  Google Scholar 

  • Linders PWJ, Stols ALH, van de Vorstenbosch RA, Stadhouders AM (1982) Mass determination of thin biological specimens for use in quantitative electron probe X-ray microanalysis. Scanning Electron Microscopy/1982 (IV):1603-1615.

    Google Scholar 

  • Marshall AT (1982) Application of (ρZ) curves and a windowless detector to the quantitative X-ray microanalysis of frozen-hydrated bulk biological specimens. Scanning Electron Microscopy /1982 (I):243-260.

    Google Scholar 

  • Marshall DJ, Hall TA (1966) A method for the microanalysis of thin films. In: Castaing R et al. (eds) Optique des rayons X et microanalyse. Hermann, Paris, p 374.

    Google Scholar 

  • Marshall DJ, Hall TA (1968) Electron-probe X-ray microanalysis of thin films. Br J Appl Physics 1:1651–1656.

    Google Scholar 

  • Pallaghy CK (1973) Electron probe microanalysis of potassium and chloride in freeze-substituted leaf sections of Zea mays. Austral J Biol Sci 26:1015–1034.

    CAS  Google Scholar 

  • Robertson AJ, Rivers D, Hagelschmidt G, Duncumb P (1961) Stannosis. Benign pneumoconiosis due to tin dioxide. Lancet, 20 May:1089–1093.

    Article  Google Scholar 

  • Roinel H, de Rouffignac Ch (1982) X-ray analysis of biological fluids: contribution of microdroplet technique to biology. Scanning Electron Microscopy/1982 (III):1155-1171.

    Google Scholar 

  • Russ JC, McHatt E (1969) Copper localization in cirrhotic rat liver by scanning electron microscopy. In: Arceneaux CJ (ed) 27th Proc Electron Microscopy Society Amer, Claitor’s, Baton Rouge, p 38.

    Google Scholar 

  • Shuman H, Somlyo AP (1987) Electron energy loss analysis of near-trace-element concentrations of calcium. Ultramicroscopy 21:23–32.

    Article  PubMed  CAS  Google Scholar 

  • Somlyo AP, Shuman H (1982) Electron probe and electron energy loss analysis in biology. Ultramicroscopy 8:219–234.

    Article  PubMed  CAS  Google Scholar 

  • Somlyo AP, Somlyo AV, Devine, CE, Peters PD, Hall TA (1974) Electron microscopy and electron probe analysis of mitochondrial cation accumulation in smooth muscle. J Cell Biol 61:723–742.

    Article  PubMed  CAS  Google Scholar 

  • Somlyo AP, Bond M, Somlyo AV (1985) Calcium content of mitochondria and endoplasmic reticulum in liver frozen rapidly in vivo. Hature (London) 314:622–625.

    Article  CAS  Google Scholar 

  • Sims RT, Hall TA (1968) X-ray emission microanalysis of proteins and sulphur in rat plantar epidermis. J Cell Sci 3:563–572.

    PubMed  CAS  Google Scholar 

  • Statham P, Pawley JB (1978) A new method for particle X-ray microanalysis based on peak to background measurements. Scanning Electron Microscopy/1978 (I):469-478.

    Google Scholar 

  • Swift JA (1979) Minimum depth electron probe X-ray microanalysis as a means for determining the sulphur content of the human hair surface, SCANNIG 2:83–88.

    Article  CAS  Google Scholar 

  • Tousimis AJ, Adler I (1963) Electron probe X-ray microanalyzer study of copper within Descemet’s membrane in Wilson’s disease. J Histochem Cytochem 11:40–47.

    Article  Google Scholar 

  • Wittry DB (1969) Recent advances in instrumentation for microprobe analysis. In: Möllenstedt G & Gaukler KH (eds) X-ray optics and microanalysis. Springer, Heidelberg, p 206.

    Google Scholar 

  • Wittry DB, Ferrier RP, Cosslett VE (1969) Microanalysis in the transmission electron microscope by selected area electron spectrometry. In: Möllenstedt G, Gaukler KH (eds) X-ray optics and microanalysis. Springer, Heidelberg, p 293.

    Google Scholar 

  • Wroblewski J, Wroblewski R (1986) Why low tempereature embedding for X-ray microanalytical investigations? A comparison of recently used preparation methods. J Microsc 142:351–362.

    Article  PubMed  CAS  Google Scholar 

  • Zglinicki T von, Bimmler M (1987) The intracellular distribution of ions and water in rat liver and heart muscle. J Microsc 146:77–85.

    Article  Google Scholar 

  • Zs.-Ngy I, Lustyik G, Zs.-Iagy V, Zarandi B, Bertoni-Freddari C (1981) Intracellular Na:K ratios in human cancer cells as revealed by energy dispersive X-ray microanalysis. J Cell Biol 90:769–777.

    Article  Google Scholar 

  • Zs.-Nagy I, Lustyik G, Bertoni-Freddari C (1982) Intracellular water and dry mass content as measured in bulk specimens by energy-dispersive X-ray microanalysis. Tissue Cell 14:47–60.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hall, T.A. (1989). The History of Electron Probe Microanalysis in Biology. In: Zierold, K., Hagler, H.K. (eds) Electron Probe Microanalysis. Springer Series in Biophysics, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74477-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74477-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74479-2

  • Online ISBN: 978-3-642-74477-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics