Skip to main content

Gas Exchange and Water Relations in Epiphytic Orchids

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 76))

Abstract

The orchids represent one of the largest and most variable families in the plant kingdom. Probably no other family of flowering plants has attracted so much interest by professional botanists and hobbyists than the orchids. This interest has been aroused not only by the exotic beauty of these plants; the fascination derives also from the manifold mechanisms of ecological adaptation developed in the orchid family. Despite the extensive literature on orchids (for review, see Arditti 1979; Dressier 1981), many problems remain to be investigated. This concerns in particular the ecophysiology of orchids. It is our aim to discuss in this chapter a special problem in this field, namely the gas exchange and water relations of epiphytic orchids. Other fascinating aspects of adaptation linked with the epiphytic life of orchids, for instance the ecology of flowering, pollination, and seedling establishment are beyond the scope of our present review. For these aspects the aforementioned monograph by L. Dressier (1981) should be consulted.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman JD (1985) Pollination of tropical and temperate orchids. In:Tan KW (ed) Proceedings cof the eleventh world orchid conference. Eleventh World Orchid Conference, Miami, Florida, pp 98–101

    Google Scholar 

  • Ames O, Correl DS (1952) Orchids of Guatemala, Vol 1. Chicago Natural History Museum, Chicago

    Google Scholar 

  • Ames O, Correll DS (1953) Orchids of Guatemala, Vol 2. Chicago Natural History Museum, Chicago

    Google Scholar 

  • Arditti J (1979) Aspects of the physiology of orchids. Adv Bot Res 7:421–655

    Article  CAS  Google Scholar 

  • Avadhani PN, Goh CJ, Rao AN, Arditti J (1982) Carbon fixation in orchids. In:Arditti J (ed) Orchid biology, reviews and perspectives, Vol II. Cornell University Press, Ithaca New York, pp 173–193

    Google Scholar 

  • Bailes C (1985) Orchids of Borneo and their conservation. In:Tan KW (ed) Proceedings of the eleventh world orchid conference. Eleventh World Orchid Conference, Miami, Florida, pp 111–114

    Google Scholar 

  • Benzing DH, Ott DW (1981) Vegetation reduction in epiphytic Bromeiiaceae and Orchidaceae:its origin and significance. Biotropica 13:131–140

    Article  Google Scholar 

  • Benzing DH, Friedman WE, Peterson G, Renfrow A (1983) Shootlessness, velamentous roots and the pre-eminence of orchidaceae in the epiphytic biotope. Am J Bot 70:121–133

    Article  Google Scholar 

  • Boardman N K (1977) Comparative photosynthesis of sun and shade plants. Annu Rev Plant Physiol 28:355–377

    Article  CAS  Google Scholar 

  • Bose TK, Bhattacharjee SK (1980) Orchids of India. Naya Prakash, Calcutta India

    Google Scholar 

  • Capesius I, Barthlott W (1975) Isotopen-Markierungen und rasterelektronenmikroskopische Untersuchungen des Velamen radicum der Orchideen. Z Pflanzenphysiol 75:436–448

    Google Scholar 

  • Catling PM (1985) Distribution and pollination biology of Canadian orchids. In:Tan KW (ed) Proceedings of the eleventh world orchid conference. Eleventh World Orchid Conference, Miami Florida, pp 121–135

    Google Scholar 

  • Cockburn W, Goh CJ, Avadhani PN (1985) Photosynthetic carbon assimilation in a shootless orchid Chiloschistci usneoides (DON) LDL:a variant on crassulacean acid metabolism. Plant Physiol 77:83–86

    Article  PubMed  CAS  Google Scholar 

  • Coutinho LM (1964) Untersuchungen über die Lage des Lichtkompensationspunktes einiger Pflanzen zu verschiedenen Tageszeiten mit besonderer Berücksichtigung des “de Saussure Effektes” bei Sukkulenten. In:Krub K (ed) Beiträge zur Physiologie. Ulmer, Stuttgart, pp 1–8

    Google Scholar 

  • Coutinho LM (1965) Algumas informações sobre a capacidade ritmica diaria da fixaçaõ e terrestres de C02 no escuro em epifitas e herbaceas acumulaçaõ de mata pluvial. Botanica 21:395–408

    Google Scholar 

  • Coutinho LM (1969) Novas observações sobre a ocorrencia do “efeito de De Saussure” e suas relações com a suculencia, a temperatura folear e os movimentos estomaticos. Botanica 24:77–102

    Google Scholar 

  • Coutinho LM (1970) Sobre a assimilaqao noturna de CO., em orquideas e bromelias. Cienc Cult 22:364–368

    Google Scholar 

  • Davis RS, Steiner ML (1952) Philippines orchids. Williams — Frederick Press, New York

    Google Scholar 

  • Delieu T, Walker DA (1981) Polarographic measurement of photosynthetic O., evolution by leaf discs. New Phytol 89:165–175

    Article  CAS  Google Scholar 

  • Dressler RL (1981) The orchids. Natural history and classification. Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  • Dunsterville GCK, Garay LA (1959) Venezuelan orchids Illustrated Vol. 1. Andre Deutsch, Amsterdam, Holland

    Google Scholar 

  • Dunsterville GCK, Garay LA (1961) Venezuelan orchids Illustrated Vol. 2. Andre Deutsch, Amsterdam, Holland

    Google Scholar 

  • Dycus AM, Knudson L (1957) The role of the velamen of the aerial roots of orchids. Bot Gaz 119:78–87

    Article  Google Scholar 

  • Earnshaw MJ, Winter K, Ziegler H, Stichler W, Cruttwell NEG, Kerenga K, Cribb PJ, Wood J, Croft JR, Carver KA, Gunn TC (1987) Altitudinal changes in the incidence of crassulacean acid metabolism in vascular epiphytes and related life forms in Papua New Guinea. Oecologia 73:566–572

    Article  Google Scholar 

  • Erickson LC (1957) Respiration and photosynthesis in Cattleya roots. Am Orchid Soc Bull 26:401–402

    CAS  Google Scholar 

  • Frei JK (1973a) Orchid ecology in a cloud forest in the mountains of Oaxaca, Mexico. Am Orchid Soc Bull 42:307–314

    Google Scholar 

  • Frei JK (1973b) Effect of bark substrate on germination and early growth of Encyclia tempensis seeds. Am Orchid Soc Bull 42:701–708

    Google Scholar 

  • Friemert V, Heininger D, Kluge M, Ziegler H (1988) Temperature effects on malic-acid efflux from the vacuoles and on the carboxylation pathways in CAM plants. Planta 174:453–461

    Article  CAS  Google Scholar 

  • Fu CF, Hew CS (1982) Crassulacean acid metabolism in orchids under water stress. Bot Gaz 143:294–297

    Article  CAS  Google Scholar 

  • Garay LA (1960) On the origin of the Orchidaceae. Bot Mus Leafl Harv Univ 19:57–87

    Google Scholar 

  • Goh CJ, Avadhani PN, Loh CS, Hanegraaf C, Arditti J (1977) Diurnal stomatal and acidity rhythms in orchid leaves. New Phytol 78:365–372

    Article  Google Scholar 

  • Goh CJ, Arditti J, Avadhani PN (1983) Carbon fixation in orchid aerial roots. New Phytol 95:367–374

    Article  CAS  Google Scholar 

  • Griffiths H (1988) Crassulacean acid metabolism:a re-appraisal of physiological plasticity in form and function. Adv Bot Res 15:43–92

    Article  CAS  Google Scholar 

  • Griffiths H, Smith JAC, Luttge U, Popp M, Cram WJ, Diaz M, Lee HSJ, Medina E, Schafer C, Stimmel KH (1989) Ecophysiology of xerophytic and halophytic vegetation of a coastal alluvial plain in northern Venezuela. IV. Tillandsia flexuosa Sw. and Schomburgkia humboldtiana Reichb., epiphytic CAM plants. New Phytol 111:273–282

    Article  CAS  Google Scholar 

  • Hew CS, Ng YW, Wong SC, Yeoh HH, Ho KK (1984) Carbon dioxide fixation in orchid aerial roots. Physiol Plant 60:154–158

    Article  CAS  Google Scholar 

  • Ho KK, Yeoh HH, Hew CS (1983) The presence of photosynthetic machinery in aerial roots of leafy orchids. Plant Cell Physiol 24:1317–1321

    CAS  Google Scholar 

  • Holtum RE (1955) Growth habits of monocotyledons:variations of a theme. Phytomorphology 5:399–413

    Google Scholar 

  • Holtum RE (1964) Flora of Malaya Vol. 1. Orchids. Government Printing Office, Singapore

    Google Scholar 

  • Holtum RE (1969) Plant life in Malaya. Longman, Singapore

    Google Scholar 

  • Johansson DR (1975) Ecology of epiphytic orchids in West African rain forests. Am Orchid Soc Bull 44:125–136

    Google Scholar 

  • Kluge M, Ting IP (1978) Crassulacean acid metabolism. Ecological studies Vol. 16. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Lang D (1980) Orchids of Britain. Oxford University Press, Oxford

    Google Scholar 

  • Lizama C (1985) Orchids of Guatemala and Central America. In:Tan KW (ed) Proceedings of the eleventh world orchid conference. Eleventh World Orchid Conference, Miami, Florida, pp 234–237

    Google Scholar 

  • Lüttge U (1985) Epiphyten:Evolution und Okophysiologie. Naturwissenschaften 72:557–566

    Article  Google Scholar 

  • Lüttge U (1987) Carbon dioxide and water demand:crassulacean acid metabolism (CAM), a versatile ecological adaptation exemplifying the need for integration in ecological work. New Phytol 106:593–629

    Article  Google Scholar 

  • Lüttge U, Ball E, Kluge M, Ong BL (1986) Photosynthetic light requirements of various tropical vascular epiphytes. Physiol Veg 24:315–331

    Google Scholar 

  • Madison M (1977) Vascular epiphytes:their systematic occurrence and salient features. Selbyana 2:1–13

    Google Scholar 

  • Martin CE, Siedow JN (1981) Crassulacean acid metabolism in the epiphyte Tillandsia usneoides L. ( Spanish moss ). Plant Physiol 63:335–339

    Article  Google Scholar 

  • Miura Y (1984) Changes in the C02 evolution rate in Cattleya roots during alternating light and dark periods as related to changes in the C02 absorption rate of Cattleya leaves. Plant Cell Physiol 25:1567–1569

    CAS  Google Scholar 

  • Mooney HA, Field C, Velazques-Janes C (1984) Photosynthetic characteristics of wet tropical forest plants. In:Medina E, Mooney HA, Vasquez-Janes C (eds) Physiological ecology of plants in the wet tropics. Dr. W. Junk, The Hague pp 113–128

    Chapter  Google Scholar 

  • Neales TF, Hew CS (1975) Two types of carbon fixation in tropical orchids. Planta 123:303–306

    Article  CAS  Google Scholar 

  • Nicholls WH (1969) Orchids of Australia. Thomas Nelson (Australia) Melbourne

    Google Scholar 

  • Nuernbergk EL (1961) Kunstlicht und Pflanzenkultur. BLV Verlagsgesellsehaft Munich, W Germany

    Google Scholar 

  • Nuernbergk EL (1963) On the C02 metabolism of orchids and its ecological aspect. In:Proceedings of 4th World Orchid Conference. Straits Times Press, Singapore, pp 158–169

    Google Scholar 

  • Osmond CB (1978) Crassulacean acid metabolism:a curiosity in context. Annu Rev Plant Physiol 29:379–414

    Article  CAS  Google Scholar 

  • Osmond CB (1982) Carbon cycling and stability of the photosynthetic apparatus in CAM. In:Ting IP, Gibbs M (eds) Crassulacean acid metabolism, pp 112–127. Am Soc Plant Physiol, Rockville (USA)

    Google Scholar 

  • Pfitzer E (1884) Beobachtungen über Bau und Entwicklung derOrchideen. Pt. 9:Ueber Zwergartige Bulbophyllen mit Assimilationshöhlen im innern der Knollen. Berichte der Deutschen Botanischen Gesellschaft 2:472–480

    Google Scholar 

  • Sanford WW (1974) The ecology of orchids. In:Withner CL (ed) The orchids, scientific studies. John Wiley, New York, pp 1–100

    Google Scholar 

  • Sanford WW, Adanlawo I (1973) Velamen and exodermis characters of West African epiphytic orchids in relation to taxonomic grouping and habitat tolerance. Linn Soc Bot J 66:307–321

    Article  Google Scholar 

  • Schäfer C, Liittge U (1987) Water translocation in Kalanchoe daigremontiana during periods of drought. Plant Cell Environment 10:761–766

    Google Scholar 

  • Schimper AFW (1898) Pflanzengeographie auf physiologischer Grundlage. Jena, Fischer

    Google Scholar 

  • Schmeil O, Fitschen J (1954) Flora von Deutschland. 64. Auflage. Quelle u. Meyer, Heidelberg

    Google Scholar 

  • Schultes RE, Pease AS (1963) Generic names of orchids, their origin and meaning. Academic Press, New York

    Google Scholar 

  • Seidenfaden G, Smitinand T (1965) The orchids of Thailand:a preliminary list. The Siam Society, Bangkok

    Google Scholar 

  • Sinclair R (1983a) Water relations of tropical epiphytes:relationships between stomatal resistance, relative water content and the components of water potential. J Exp Bot 34:1652–1663

    Article  Google Scholar 

  • Sinclair R (1983b) Water relations of tropical epiphytes performance during droughting. J Exp Bot 34:1664–1675

    Article  Google Scholar 

  • Sinclair R (1984) Water relations of tropical epiphytes:evidence for crassulacean acid metabolism. J Exp Bot 35:1–7

    Article  CAS  Google Scholar 

  • Steudle E, Smith JA, Liittge U (1980) Water relation parameters of individual mesophyll cells of the crassulacean acid metabolism plant Kalanchoe daigremontiana. Plant Physiol 66:1155–1163

    Article  PubMed  CAS  Google Scholar 

  • Sulit MD (1950) Field observations on tree hosts of orchids in the Philippines. Philipp Orchid Rev 3:3–8

    Google Scholar 

  • Sulit MD (1953) Field observations on tree hosts of orchids in Palawan. Philipp Orchid Rev 5:16

    Google Scholar 

  • Troll W (1928) Organisation und Gestalt im Bereich der Blüte. Springer, Berlin

    Google Scholar 

  • Walter H (1951) Grundlagen der Pflanzenverbreitung. 1. Teil:Standortlehre. Ulmer, Stuttgart

    Google Scholar 

  • Warburg O (1886) Über die Bedeutung der organischen Sauren fur den LebensprozeB der Pflanzen (speziell der sog. Fettpflanzen) Unters Bot Inst Tubingen 2:53–150

    Google Scholar 

  • Went F W (1940) Soziologie der epiphy ten eines tropischen Urwaldes. Annales du Jardin Botanique de Buitenzorg 50:1–98

    Google Scholar 

  • Winter K (1985) Crassulacean acid metabolism. In:Barber J, Baker NR (eds) Photosynthetic mechanisms and the environment. Elsevier, Amsterdam, pp 329–387

    Google Scholar 

  • Winter K, Demmig B (1987) Reduction of state Q and non-radiative energy dissipation during photosynthesis in leaves of a crassulacean acid metabolism plant, Kalanchoe daigremontiana Hamet et Perr. Plant Physiol 85:1000–1007

    Article  PubMed  CAS  Google Scholar 

  • Winter K, Wallace BJ, Stocker GC, Roksandic Z (1983) Crassulacean acid metabolism in Australian vascular epiphytes and some related species. Oecologia 57:129–141

    Article  Google Scholar 

  • Winter K, Medina E, Garcia V, Mayoral ML, Muniz R (1985) Crassulacean acid metabolism in roots of a leafless orchid, Campylocentrum tyrridion garay Dunsterv. Plant Physiol 118:73–78

    CAS  Google Scholar 

  • Winter K, Osmond CB, Hubick KT (1986) Crassulacean acid metabolism in the shade. Studies on an epiphytic fern, Pyrrosia longifolia, and other rainforest species from Australia. Oecologia 68:224–230

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goh, C.J., Kluge, M. (1989). Gas Exchange and Water Relations in Epiphytic Orchids. In: Lüttge, U. (eds) Vascular Plants as Epiphytes. Ecological Studies, vol 76. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74465-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74465-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74467-9

  • Online ISBN: 978-3-642-74465-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics