Gas Exchange and Water Relations in Epiphytic Orchids

  • C. J. Goh
  • M. Kluge
Part of the Ecological Studies book series (ECOLSTUD, volume 76)


The orchids represent one of the largest and most variable families in the plant kingdom. Probably no other family of flowering plants has attracted so much interest by professional botanists and hobbyists than the orchids. This interest has been aroused not only by the exotic beauty of these plants; the fascination derives also from the manifold mechanisms of ecological adaptation developed in the orchid family. Despite the extensive literature on orchids (for review, see Arditti 1979; Dressier 1981), many problems remain to be investigated. This concerns in particular the ecophysiology of orchids. It is our aim to discuss in this chapter a special problem in this field, namely the gas exchange and water relations of epiphytic orchids. Other fascinating aspects of adaptation linked with the epiphytic life of orchids, for instance the ecology of flowering, pollination, and seedling establishment are beyond the scope of our present review. For these aspects the aforementioned monograph by L. Dressier (1981) should be consulted.


Crassulacean Acid Metabolism Aerial Root Crassulacean Acid Metabolism Plant Epiphytic Orchid Vascular Epiphyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerman JD (1985) Pollination of tropical and temperate orchids. In:Tan KW (ed) Proceedings cof the eleventh world orchid conference. Eleventh World Orchid Conference, Miami, Florida, pp 98–101Google Scholar
  2. Ames O, Correl DS (1952) Orchids of Guatemala, Vol 1. Chicago Natural History Museum, ChicagoGoogle Scholar
  3. Ames O, Correll DS (1953) Orchids of Guatemala, Vol 2. Chicago Natural History Museum, ChicagoGoogle Scholar
  4. Arditti J (1979) Aspects of the physiology of orchids. Adv Bot Res 7:421–655CrossRefGoogle Scholar
  5. Avadhani PN, Goh CJ, Rao AN, Arditti J (1982) Carbon fixation in orchids. In:Arditti J (ed) Orchid biology, reviews and perspectives, Vol II. Cornell University Press, Ithaca New York, pp 173–193Google Scholar
  6. Bailes C (1985) Orchids of Borneo and their conservation. In:Tan KW (ed) Proceedings of the eleventh world orchid conference. Eleventh World Orchid Conference, Miami, Florida, pp 111–114Google Scholar
  7. Benzing DH, Ott DW (1981) Vegetation reduction in epiphytic Bromeiiaceae and Orchidaceae:its origin and significance. Biotropica 13:131–140CrossRefGoogle Scholar
  8. Benzing DH, Friedman WE, Peterson G, Renfrow A (1983) Shootlessness, velamentous roots and the pre-eminence of orchidaceae in the epiphytic biotope. Am J Bot 70:121–133CrossRefGoogle Scholar
  9. Boardman N K (1977) Comparative photosynthesis of sun and shade plants. Annu Rev Plant Physiol 28:355–377CrossRefGoogle Scholar
  10. Bose TK, Bhattacharjee SK (1980) Orchids of India. Naya Prakash, Calcutta IndiaGoogle Scholar
  11. Capesius I, Barthlott W (1975) Isotopen-Markierungen und rasterelektronenmikroskopische Untersuchungen des Velamen radicum der Orchideen. Z Pflanzenphysiol 75:436–448Google Scholar
  12. Catling PM (1985) Distribution and pollination biology of Canadian orchids. In:Tan KW (ed) Proceedings of the eleventh world orchid conference. Eleventh World Orchid Conference, Miami Florida, pp 121–135Google Scholar
  13. Cockburn W, Goh CJ, Avadhani PN (1985) Photosynthetic carbon assimilation in a shootless orchid Chiloschistci usneoides (DON) LDL:a variant on crassulacean acid metabolism. Plant Physiol 77:83–86PubMedCrossRefGoogle Scholar
  14. Coutinho LM (1964) Untersuchungen über die Lage des Lichtkompensationspunktes einiger Pflanzen zu verschiedenen Tageszeiten mit besonderer Berücksichtigung des “de Saussure Effektes” bei Sukkulenten. In:Krub K (ed) Beiträge zur Physiologie. Ulmer, Stuttgart, pp 1–8Google Scholar
  15. Coutinho LM (1965) Algumas informações sobre a capacidade ritmica diaria da fixaçaõ e terrestres de C02 no escuro em epifitas e herbaceas acumulaçaõ de mata pluvial. Botanica 21:395–408Google Scholar
  16. Coutinho LM (1969) Novas observações sobre a ocorrencia do “efeito de De Saussure” e suas relações com a suculencia, a temperatura folear e os movimentos estomaticos. Botanica 24:77–102Google Scholar
  17. Coutinho LM (1970) Sobre a assimilaqao noturna de CO., em orquideas e bromelias. Cienc Cult 22:364–368Google Scholar
  18. Davis RS, Steiner ML (1952) Philippines orchids. Williams — Frederick Press, New YorkGoogle Scholar
  19. Delieu T, Walker DA (1981) Polarographic measurement of photosynthetic O., evolution by leaf discs. New Phytol 89:165–175CrossRefGoogle Scholar
  20. Dressler RL (1981) The orchids. Natural history and classification. Harvard University Press, Cambridge, MassachusettsGoogle Scholar
  21. Dunsterville GCK, Garay LA (1959) Venezuelan orchids Illustrated Vol. 1. Andre Deutsch, Amsterdam, HollandGoogle Scholar
  22. Dunsterville GCK, Garay LA (1961) Venezuelan orchids Illustrated Vol. 2. Andre Deutsch, Amsterdam, HollandGoogle Scholar
  23. Dycus AM, Knudson L (1957) The role of the velamen of the aerial roots of orchids. Bot Gaz 119:78–87CrossRefGoogle Scholar
  24. Earnshaw MJ, Winter K, Ziegler H, Stichler W, Cruttwell NEG, Kerenga K, Cribb PJ, Wood J, Croft JR, Carver KA, Gunn TC (1987) Altitudinal changes in the incidence of crassulacean acid metabolism in vascular epiphytes and related life forms in Papua New Guinea. Oecologia 73:566–572CrossRefGoogle Scholar
  25. Erickson LC (1957) Respiration and photosynthesis in Cattleya roots. Am Orchid Soc Bull 26:401–402Google Scholar
  26. Frei JK (1973a) Orchid ecology in a cloud forest in the mountains of Oaxaca, Mexico. Am Orchid Soc Bull 42:307–314Google Scholar
  27. Frei JK (1973b) Effect of bark substrate on germination and early growth of Encyclia tempensis seeds. Am Orchid Soc Bull 42:701–708Google Scholar
  28. Friemert V, Heininger D, Kluge M, Ziegler H (1988) Temperature effects on malic-acid efflux from the vacuoles and on the carboxylation pathways in CAM plants. Planta 174:453–461CrossRefGoogle Scholar
  29. Fu CF, Hew CS (1982) Crassulacean acid metabolism in orchids under water stress. Bot Gaz 143:294–297CrossRefGoogle Scholar
  30. Garay LA (1960) On the origin of the Orchidaceae. Bot Mus Leafl Harv Univ 19:57–87Google Scholar
  31. Goh CJ, Avadhani PN, Loh CS, Hanegraaf C, Arditti J (1977) Diurnal stomatal and acidity rhythms in orchid leaves. New Phytol 78:365–372CrossRefGoogle Scholar
  32. Goh CJ, Arditti J, Avadhani PN (1983) Carbon fixation in orchid aerial roots. New Phytol 95:367–374CrossRefGoogle Scholar
  33. Griffiths H (1988) Crassulacean acid metabolism:a re-appraisal of physiological plasticity in form and function. Adv Bot Res 15:43–92CrossRefGoogle Scholar
  34. Griffiths H, Smith JAC, Luttge U, Popp M, Cram WJ, Diaz M, Lee HSJ, Medina E, Schafer C, Stimmel KH (1989) Ecophysiology of xerophytic and halophytic vegetation of a coastal alluvial plain in northern Venezuela. IV. Tillandsia flexuosa Sw. and Schomburgkia humboldtiana Reichb., epiphytic CAM plants. New Phytol 111:273–282CrossRefGoogle Scholar
  35. Hew CS, Ng YW, Wong SC, Yeoh HH, Ho KK (1984) Carbon dioxide fixation in orchid aerial roots. Physiol Plant 60:154–158CrossRefGoogle Scholar
  36. Ho KK, Yeoh HH, Hew CS (1983) The presence of photosynthetic machinery in aerial roots of leafy orchids. Plant Cell Physiol 24:1317–1321Google Scholar
  37. Holtum RE (1955) Growth habits of monocotyledons:variations of a theme. Phytomorphology 5:399–413Google Scholar
  38. Holtum RE (1964) Flora of Malaya Vol. 1. Orchids. Government Printing Office, SingaporeGoogle Scholar
  39. Holtum RE (1969) Plant life in Malaya. Longman, SingaporeGoogle Scholar
  40. Johansson DR (1975) Ecology of epiphytic orchids in West African rain forests. Am Orchid Soc Bull 44:125–136Google Scholar
  41. Kluge M, Ting IP (1978) Crassulacean acid metabolism. Ecological studies Vol. 16. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  42. Lang D (1980) Orchids of Britain. Oxford University Press, OxfordGoogle Scholar
  43. Lizama C (1985) Orchids of Guatemala and Central America. In:Tan KW (ed) Proceedings of the eleventh world orchid conference. Eleventh World Orchid Conference, Miami, Florida, pp 234–237Google Scholar
  44. Lüttge U (1985) Epiphyten:Evolution und Okophysiologie. Naturwissenschaften 72:557–566CrossRefGoogle Scholar
  45. Lüttge U (1987) Carbon dioxide and water demand:crassulacean acid metabolism (CAM), a versatile ecological adaptation exemplifying the need for integration in ecological work. New Phytol 106:593–629CrossRefGoogle Scholar
  46. Lüttge U, Ball E, Kluge M, Ong BL (1986) Photosynthetic light requirements of various tropical vascular epiphytes. Physiol Veg 24:315–331Google Scholar
  47. Madison M (1977) Vascular epiphytes:their systematic occurrence and salient features. Selbyana 2:1–13Google Scholar
  48. Martin CE, Siedow JN (1981) Crassulacean acid metabolism in the epiphyte Tillandsia usneoides L. ( Spanish moss ). Plant Physiol 63:335–339CrossRefGoogle Scholar
  49. Miura Y (1984) Changes in the C02 evolution rate in Cattleya roots during alternating light and dark periods as related to changes in the C02 absorption rate of Cattleya leaves. Plant Cell Physiol 25:1567–1569Google Scholar
  50. Mooney HA, Field C, Velazques-Janes C (1984) Photosynthetic characteristics of wet tropical forest plants. In:Medina E, Mooney HA, Vasquez-Janes C (eds) Physiological ecology of plants in the wet tropics. Dr. W. Junk, The Hague pp 113–128CrossRefGoogle Scholar
  51. Neales TF, Hew CS (1975) Two types of carbon fixation in tropical orchids. Planta 123:303–306CrossRefGoogle Scholar
  52. Nicholls WH (1969) Orchids of Australia. Thomas Nelson (Australia) MelbourneGoogle Scholar
  53. Nuernbergk EL (1961) Kunstlicht und Pflanzenkultur. BLV Verlagsgesellsehaft Munich, W GermanyGoogle Scholar
  54. Nuernbergk EL (1963) On the C02 metabolism of orchids and its ecological aspect. In:Proceedings of 4th World Orchid Conference. Straits Times Press, Singapore, pp 158–169Google Scholar
  55. Osmond CB (1978) Crassulacean acid metabolism:a curiosity in context. Annu Rev Plant Physiol 29:379–414CrossRefGoogle Scholar
  56. Osmond CB (1982) Carbon cycling and stability of the photosynthetic apparatus in CAM. In:Ting IP, Gibbs M (eds) Crassulacean acid metabolism, pp 112–127. Am Soc Plant Physiol, Rockville (USA)Google Scholar
  57. Pfitzer E (1884) Beobachtungen über Bau und Entwicklung derOrchideen. Pt. 9:Ueber Zwergartige Bulbophyllen mit Assimilationshöhlen im innern der Knollen. Berichte der Deutschen Botanischen Gesellschaft 2:472–480Google Scholar
  58. Sanford WW (1974) The ecology of orchids. In:Withner CL (ed) The orchids, scientific studies. John Wiley, New York, pp 1–100Google Scholar
  59. Sanford WW, Adanlawo I (1973) Velamen and exodermis characters of West African epiphytic orchids in relation to taxonomic grouping and habitat tolerance. Linn Soc Bot J 66:307–321CrossRefGoogle Scholar
  60. Schäfer C, Liittge U (1987) Water translocation in Kalanchoe daigremontiana during periods of drought. Plant Cell Environment 10:761–766Google Scholar
  61. Schimper AFW (1898) Pflanzengeographie auf physiologischer Grundlage. Jena, FischerGoogle Scholar
  62. Schmeil O, Fitschen J (1954) Flora von Deutschland. 64. Auflage. Quelle u. Meyer, HeidelbergGoogle Scholar
  63. Schultes RE, Pease AS (1963) Generic names of orchids, their origin and meaning. Academic Press, New YorkGoogle Scholar
  64. Seidenfaden G, Smitinand T (1965) The orchids of Thailand:a preliminary list. The Siam Society, BangkokGoogle Scholar
  65. Sinclair R (1983a) Water relations of tropical epiphytes:relationships between stomatal resistance, relative water content and the components of water potential. J Exp Bot 34:1652–1663CrossRefGoogle Scholar
  66. Sinclair R (1983b) Water relations of tropical epiphytes performance during droughting. J Exp Bot 34:1664–1675CrossRefGoogle Scholar
  67. Sinclair R (1984) Water relations of tropical epiphytes:evidence for crassulacean acid metabolism. J Exp Bot 35:1–7CrossRefGoogle Scholar
  68. Steudle E, Smith JA, Liittge U (1980) Water relation parameters of individual mesophyll cells of the crassulacean acid metabolism plant Kalanchoe daigremontiana. Plant Physiol 66:1155–1163PubMedCrossRefGoogle Scholar
  69. Sulit MD (1950) Field observations on tree hosts of orchids in the Philippines. Philipp Orchid Rev 3:3–8Google Scholar
  70. Sulit MD (1953) Field observations on tree hosts of orchids in Palawan. Philipp Orchid Rev 5:16Google Scholar
  71. Troll W (1928) Organisation und Gestalt im Bereich der Blüte. Springer, BerlinGoogle Scholar
  72. Walter H (1951) Grundlagen der Pflanzenverbreitung. 1. Teil:Standortlehre. Ulmer, StuttgartGoogle Scholar
  73. Warburg O (1886) Über die Bedeutung der organischen Sauren fur den LebensprozeB der Pflanzen (speziell der sog. Fettpflanzen) Unters Bot Inst Tubingen 2:53–150Google Scholar
  74. Went F W (1940) Soziologie der epiphy ten eines tropischen Urwaldes. Annales du Jardin Botanique de Buitenzorg 50:1–98Google Scholar
  75. Winter K (1985) Crassulacean acid metabolism. In:Barber J, Baker NR (eds) Photosynthetic mechanisms and the environment. Elsevier, Amsterdam, pp 329–387Google Scholar
  76. Winter K, Demmig B (1987) Reduction of state Q and non-radiative energy dissipation during photosynthesis in leaves of a crassulacean acid metabolism plant, Kalanchoe daigremontiana Hamet et Perr. Plant Physiol 85:1000–1007PubMedCrossRefGoogle Scholar
  77. Winter K, Wallace BJ, Stocker GC, Roksandic Z (1983) Crassulacean acid metabolism in Australian vascular epiphytes and some related species. Oecologia 57:129–141CrossRefGoogle Scholar
  78. Winter K, Medina E, Garcia V, Mayoral ML, Muniz R (1985) Crassulacean acid metabolism in roots of a leafless orchid, Campylocentrum tyrridion garay Dunsterv. Plant Physiol 118:73–78Google Scholar
  79. Winter K, Osmond CB, Hubick KT (1986) Crassulacean acid metabolism in the shade. Studies on an epiphytic fern, Pyrrosia longifolia, and other rainforest species from Australia. Oecologia 68:224–230CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • C. J. Goh
    • 1
  • M. Kluge
    • 2
  1. 1.Department of BotanyNational University of SingaporeSingapore
  2. 2.Institut für BotanikTechnische Hochschule DarmstadtDarmstadtGermany

Personalised recommendations