Skip to main content

Vascular Epiphytes:Setting the Scene

  • Chapter
Vascular Plants as Epiphytes

Part of the book series: Ecological Studies ((ECOLSTUD,volume 76))

Abstract

It appears that primarily epiphytism is simply a matter of occupying space. Algae, whether unicellular, filamentous or thalluous, as long as they are not planktonic, grow on almost everything including each other (Fig. 1.1). In the aquatic environment this mostly means nothing more than obtaining a holdfast, it is casual and opportunistic and does not bring about any change in environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benzing DH (1982) Mycorrhizal infections of epiphytic orchids in southern Florida. Am Orchid Soc Bull 51:618–622

    Google Scholar 

  • Benzing DH, Atwood JT (1984) Orchidaceae:ancestral habitats and current status in forest canopies. Syst Bot 9:155–165

    Article  Google Scholar 

  • Benzing DH, Renfrow A (1974) The mineral nutrition of Bromeliaceae. Bot Gaz 135:218–288

    Article  Google Scholar 

  • Benzing DH, Renfrow A (1980) The nutritional dynamics of Tillandsia circinnata in southern Florida and the origin of the “air plant” strategy. Bot Gaz 141:165–172

    Article  Google Scholar 

  • Berry JA (1975) Adaptation of photosynthetic processes to stress. Science 188:644–650

    Article  PubMed  CAS  Google Scholar 

  • Bertsch A (1966) C02-Gaswechsel und Wasserhaushalt der aerophilen Griinalge Apatococcus lobatus. Planta 70:46–72

    Article  Google Scholar 

  • Björkman O, Ludlow MM (1972) Characterization of the light climate on the floor of a Queensland rainforest. Carnegie Inst Wash Yearbook 71:85–94

    Google Scholar 

  • Boardman NK (1977) Comparative photosynthesis of sun and shade plants. Annu Rev Plant Physiol 28:355–377

    Article  CAS  Google Scholar 

  • Chazdon RL, Fetcher N (1984a) Photosynthetic light environments in a lowland tropical rainforest in Costa Rica. J Ecol 72:553–564

    Article  Google Scholar 

  • Chazdon RL, Fetcher N (1984b) Light environments of tropical rainforests. In:Medina E, Mooney HA, Vazquez-Yanes C (eds) Physiological ecology of plants in the wet tropics. Dr W Junk, The Hague, pp 27–50

    Chapter  Google Scholar 

  • Clarkson DT, Kuiper PJC, Lüttge U (1986) Mineral nutrition:sources of nutrients for land plants from outside the pedosphere. Progress in Botany 48:80–96

    CAS  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310

    Article  PubMed  CAS  Google Scholar 

  • Evans GC (1939) Ecological studies on the rainforest of southern Nigeria. II. The atmospheric environmental conditions. J Ecol 27:436–482

    Article  CAS  Google Scholar 

  • Evans GC (1966) Model and measurement in the study of woodland light climates. In:Bainbridge R, Evans GC, Rackham O (eds) Light as an ecological factor. Blackwell, Oxford, pp 53–76

    Google Scholar 

  • Gessner F (1956) Der Wasserhaushalt der Epiphyten und Lianen. In:Ruhland W (ed) Handbuch der Pflanzenphysiologie, Bd. Ill, Pflanze und Wasser. Springer, Berlin Gottingen Heidelberg, pp 915–950

    Google Scholar 

  • Givnish TJ, Burkhardt EL, Happel RE, Weintraub JD (1984) Carnivory in the bromeliad Brocchinia reducta, with a cost/benefit model for the general restriction of carnivorous plants to sunny, moist, nutrient-poor habitats. Am Nat 124:479–497

    Article  Google Scholar 

  • Griffiths H, Luttge U, Stimmel K-H, Crook CE, Griffiths NM, Smith JAC (1986) Comparative ecophysiology of CAM and Q bromeliads. III. Environmental influences on C02 assimilation and transpiration. Plant Cell Environ 9:385–393

    Article  Google Scholar 

  • Grime JP, Mackey JML, Hillier SH, Read DJ (1987) Floristic diversity in a model system using experimental microcosmos. Nature 328:420–422

    Article  Google Scholar 

  • Grubb PJ, Whitmore TC (1967) A comparison of montane and lowland rainforest in Ecuador. III. The light reaching the ground vegetation. J Ecol 55:33–57

    Article  Google Scholar 

  • Herwitz SR (1986) Episodic stemflow inputs of magnesium and potassium to a tropical forest floor during heavy rainfall events. Oecologia 70:423–425

    Article  Google Scholar 

  • Humbeck K, Senger H (1984) The blue light factor in sun and shade plant adaptation. In:Senger H (ed) Blue light effects in biological systems. Springer, Berlin Heidelberg New York Tokyo, pp 344–351

    Chapter  Google Scholar 

  • Johansson D (1974) Ecology of vascular epiphytes in west African rain forest. Acta Phytogeogr Suec 59:1–129

    Google Scholar 

  • Jordan C, Golley F, Hall Je, Hall Ja (1980) Nutrient scavenging of rainfall by the canopy of an Amazonian rainforest. Biotropica 12:61–66

    Article  Google Scholar 

  • Kellmann M, Hudson J, Sanmugadas K (1982) Temporal variability in atmospheric nutrient influx to a tropical ecosystem. Biotropica 14:1–9

    Article  Google Scholar 

  • Kirschbaum MUF, Pearcy RW (1988) Concurrent measurements of oxygen- and carbon-dioxide exchange during light flecks in Alocasia macrorrhiza. Planta 174:527–533

    Article  CAS  Google Scholar 

  • Kirschbaum MUF, Gross LJ, Pearcy RW (1988) Observed and modelled stomatal responses to dynamic light environments in the shade plant Alocasia macrorrhiza. Plant Cell Environ 11:111–121

    Google Scholar 

  • Lange OL, Redon J (1983) Epiphytische Flechten im Bereich einer chilenischen “Nebeloase” (Fray Jorge) II. Okophysiologische Charakterisierung von C02-Gaswechsel und Wasserhaushalt. Flora 174:245–284

    Google Scholar 

  • Lange OL, Kilian E, Ziegler H (1986) Water vapor uptake and photosynthesis of lichens:performance differences in species with green and blue-green algae as phycobionts. Oecologia 71:104–110

    Article  Google Scholar 

  • Lange OL, Green TGA, Ziegler H (1988) Water status related photosynthesis and carbon isotope discrimination in species of the lichen genus Pseudocyphellaria with green or blue-green photobionts and in photosymbiodemes. Oecologia 75:494–501

    Article  Google Scholar 

  • Langenheim JH, Osmond CB, Brooks A, Ferrar PJ (1984) Photosynthetic responses to light in seedlings of selected Amazonian and Australian rainforest tree species. Oecologia 63:215–224

    Article  Google Scholar 

  • Lee HSJ, Luttge U, Medina E, Smith JAC, Cram WJ, Diaz M, Griffiths H, Popp M, Schafer C, Stimmel KH, Thonke B (1989) Ecophysiology of xerophytic and halophytic vegetation of a coastal alluvial plain in northern Venezuela. III. Bromelia humilis Jacq., a terrestrial CAM bromeliad. New Phytol 111:253–271

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Buschmann C, Doll M, Fietz HJ, Bach T, Kozel U, Meier D, Rahmsdorf U (1981) Photosynthetic activity, chloroplast ultrastructure and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosynth Res 2:115–141

    Article  CAS  Google Scholar 

  • Lüttge U (1983) Ecophysiology of carnivorous plants. In:Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of Plant Physiology New Series, vol. 12C, Physiological plant ecology III, Functional responses to the chemical and biological environment. Springer, Berlin Heidelberg New York Tokyo, pp 489–517

    Google Scholar 

  • Lüttge U (1985) Epiphyten:Evolution und Ökophysiologie. Naturwissenschaften 72:557–566

    Article  Google Scholar 

  • Lüttge U, Ball E, Kluge M, Ong BL (1986) Photosynthetic light requirements of various tropical vascular epiphytes. Physiol Veg 24:315–331

    Google Scholar 

  • Mägdefrau K (1956) Paläobiologie der Pflanzen. VEB G. Fischer, Jena

    Google Scholar 

  • Medina E (1974) Dark C02-fixation, habitat preference and evolution within the Bromeliaceae. Evolution 28:677–686

    Article  Google Scholar 

  • Medina E, Montes G, Cuevas E, Rokzandic Z (1986a) Profiles of CO2 concentration and δ13 values in tropical rainforests of the upper Rio Negro Basin, Venezuela. J Trop Ecol 2:207–217

    Article  Google Scholar 

  • Medina E, Olivares E, Diaz M (1986b) Water stress and light intensity effects on growth and nocturnal acid accumulation in a terrestrial CAM bromeliad (Bromelia humilis Jacq.). Oecologia 70:441–446

    Article  Google Scholar 

  • Osmond CB (1983) Interactions between irradiance, nitrogen nutrition, and water stress in the sun-shade responses of Solanum dulcamara. Oecologia 57:316–321

    Article  Google Scholar 

  • Pearcy RW (1983) The light environment and growth of G, and C4 tree species in the understory of a Hawaiian forest. Oecologia 58:19–25

    Article  Google Scholar 

  • Perry DR (1985) Die Kronenregion des tropischen Regenwaldes. Spektrum der Wissenschaft 1, 1985:76–85

    Google Scholar 

  • Pittendrigh CS (1948) The bromeliad-,4 nopheles-malaria complex in Trinidad. I. The bromeliad flora. Evolution 2:58–89

    Article  PubMed  CAS  Google Scholar 

  • Redon J, Lange OL (1983) Epiphytische Flechten im Bereich einer chilenischen “Nebeloase” (Fray Jorge). I. Vegetationskundliche Gliederung und Standortsbedingungen. Flora 174:213–243.

    Google Scholar 

  • Richards PW (1952) The tropical rainforest. An ecological study. Cambridge University Press, London

    Google Scholar 

  • Ruinen J (1953) Epiphytosis. A second view on epiphytism. Ann Bogor 1:101–157

    Google Scholar 

  • Schäfer C, Lüttge U (1986) Effects of water stress on gas exchange and water relations of a succulent epiphyte, Kalanchoe uniflora. Oecologia 71:127–132

    Article  Google Scholar 

  • Schä fer C, Lüttge U (1988) Effects of high irradiances on photosynthesis, growth and crassulacean acid metabolism in the epiphyte Kalanchoe uniflora. Oecologia 75:567–574

    Article  Google Scholar 

  • Schimper AFW (1888) Botanische Mitteilungen aus den Tropen. I I. Epiphytische Vegetation Amerikas. G. Fischer, Jena

    Google Scholar 

  • Schmitt AK, Martin CE, Lü ttge U (1989) Gas exchange and water vapor uptake in the atmospheric CAM bromeliad Tillandsia recurvata L.:The influence of trichomes. Bot Acta 102:80–84

    Google Scholar 

  • Tietze M (1906) Physiologische Bromeliaceen-Studien II. Die Entwicklung der Wasseraufnehmenden Bromeliaceen-Trichome. Z Naturwiss 78:1–50

    Google Scholar 

  • Vareschi V (1980) Vegetationsö kologie der Tropen. Eugen Ulmer, Stuttgart

    Google Scholar 

  • Watson JB, Kress WJ, Roesel CS (1987) A bibliography of biological literature on vascular epiphytes. Selbyana 10:1–23

    CAS  Google Scholar 

  • Whitmore TC (1966) A study of light conditions in forests in Ecuador with some suggestions for further studies in tropical forests. In:Bainbridge R, Evans GC, Rackham I (eds) Light as an ecological factor. Blackwell, Oxford, pp 235–247

    Google Scholar 

  • Woods DB, Turner NC (1971) Stomatal response to changing light by four tree species of varying shade tolerance. New Phytol 70:77–84

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lüttge, U. (1989). Vascular Epiphytes:Setting the Scene. In: Lüttge, U. (eds) Vascular Plants as Epiphytes. Ecological Studies, vol 76. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74465-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74465-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74467-9

  • Online ISBN: 978-3-642-74465-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics