Tumor Bone Formation in Different Osteosarcomas: Topological, Biochemical, and Histochemical Analyses

  • J. Althoff
  • P. Quint
  • H. J. Höhling
  • A. Roessner
  • E. Grundmann
Part of the Current Topics in Pathology book series (CT PATHOLOGY, volume 80)


Generally osteosarcomas show a pattern of considerable heterogeneity. Areas with osteoblastic cells are very often surrounded by fibroblastic areas, and anaplastic, telangiectatic, and small cell areas are present. On the basis of their different morphology and histology Dahlin and Unni (1977) have introduced several subentities within osteosarcomas. Studies by Grundmann etal. (1981) and Roessner (1984) have substantiated the value of a cytogenetic approach. During the growth of tumor bone, several morphological types of differentiation, probably caused by different metabolic processes, can be observed in the same tumor, but little is known about the related biochemical changes. For a better understanding of this pathological bone formation occurring during tumor growth, it is important to study physiological bone formation. This may be done in different model systems, such as mineralizing avian tendons (Althoff et al. 1977, 1978; Quint et al. 1977; Höhling et al. 1976), dentinogenesis (Linde et al. 1981), organ cultures (Urist et al. 1983; Rath et al. 1981; Althoff et al. 1988), and enchondral ossification occurring in the epiphyseal growth plate (Wuthier 1969; Schmidt et al. 1978; Althoff et al. 1982).


Total Phosphorus Growth Plate Tumor Bone Alkaline Phosphatase Activity Acid Phosphatase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ali SY (1976) Analysis of matrix vesicles and their role in the calcification of epiphyseal cartilage. Fed Proc 35: 135–142PubMedGoogle Scholar
  2. Althoff J, Quint P, Höhling HJ (1977) Combined zonal chemical and biochemical analysis on mineralizing turkey tibia tendon. Calcif Tissue Res 22: 47Google Scholar
  3. Althoff J, Quint P, Höhling HJ (1978) Activation and specificity of alkaline phosphatase of a mineralizing collagen-rich system. Experientia 34: 692–693PubMedCrossRefGoogle Scholar
  4. Althoff J, Quint P, Krefting E-R, Höhling HJ (1982) Morphological studies on the epiphyseal growth plate combined with biochemical and X-ray microprobe analyses. Histochemistry 74: 541–552PubMedCrossRefGoogle Scholar
  5. Althoff J, Quint P, Höhling HJ, Roessner A, Grundmann E (1985) Biological characterization of human bone tumors: IV. Combined biochemical and histological analyses of different osteosarcomes. Pathol Res Pract 180: 383–391PubMedCrossRefGoogle Scholar
  6. Althoff J, Quint P, Höhling HJ, Roessner A, Grundmann E (1985b) Biological characterization of human bone tumors: V. Zonal charaterization of osteosarcoma: topological biochemical analysis correlated with morphology. Pathol Pract Res 180: 392–399CrossRefGoogle Scholar
  7. Althoff J, Quint P, Richter K-D, Jones DB (1988) Osteoblasten und Knochenorgankulturen unter in vivo-Bedingungen. Z. Zahnärztl Implantol IV, 282–285Google Scholar
  8. Anderson HC (1967) Electron microscopic studies of induced cartilage development and clacification. J Cell Biol 35: 81–101PubMedCrossRefGoogle Scholar
  9. Blumenthal NC, Betts F, Posner AS (1977): Stabilization of amorphous calcium phosphate by Mg and ATP. Calcif Tissue Res 23: 245–250PubMedCrossRefGoogle Scholar
  10. Bonucci E (1967) Fine structure of early cartilage calcification. J Ultrastruct Res 20: 33–50PubMedCrossRefGoogle Scholar
  11. Boyde A, Shapiro IM (1980) Energy dispersive X-ray elemental analysis of isolated epiphyseal growth plate chondrocyte fragments. Histochemistry 69: 85–94PubMedCrossRefGoogle Scholar
  12. Cone CD Jr (1971) Unified theory on the basic mechanism of normal mitotic control and oncogenesis. J Theor Biol 30: 151–181PubMedCrossRefGoogle Scholar
  13. Dahlin DC (1978) Bone tumors. General aspects and data on 6221 cases, 3rd edn. Charles C. Thomas, SpringfieldGoogle Scholar
  14. Dahlin DC, Unni KK (1977) Osteosarcomas of bone and its important recognizable varieties. Am J Surg Pathol 1: 61–72PubMedCrossRefGoogle Scholar
  15. Fleisch H, Neuman WF (1961) Mechanism of calcification: role of collagen, polyphosphates and Phosphatase. Am J Physiol 200: 1296–1300Google Scholar
  16. Granda JL, Posner AS (1971) Distribution of four hydrolases in the epiphyseal plate. Clin Orthop 74: 269–272PubMedGoogle Scholar
  17. Grundmann E, Roessner A, Immenkamp M (1981) Tumor cell types in osteosarcoma as revealed by electronmicroscopy. Implications for histogenesis and subclassification. Virchows Archiv 36: 257–273PubMedGoogle Scholar
  18. Höhling HJ, Barckhaus RH, Krefting ER, Schreiber J (1976) Electron microscopic microprobe analysis of mineralized collagen fibrils and extracollagenous regions in turkey leg tendon. Cell Tissue Res 175: 345–350PubMedCrossRefGoogle Scholar
  19. Huvos AG (1979) Bone tumors, diagnosis, treatment and prognosis. W.B. Saunders, PhiladelphiaGoogle Scholar
  20. Jones DB, Scholübbers G, Althoff J, Becker M, Doty S (1988) Evidence for more than one type of bone forming cell. In: Heuck HW, Keck E (eds). Fortschritte der Osteologie in Diagnostik und Therapie. Springer, Berlin, Heidelberg, New York, pp 311–324Google Scholar
  21. Kakuta S, Golubb EE, Shapiro IM (1985) Morphometric analysis of phosphorus pools in calcified cartilage. Calcif Tissue Int 37: 293–299PubMedCrossRefGoogle Scholar
  22. Krefting E-R, Lißner G, Höhling HJ (1980) Mixtures of salts as Standards for quantitative electronprobe microanalysis of biological material. In: Brederoo P, Cosslett VE (eds) Electron microscopy. VIIth European Congress for Electron Microscopy Foundation, Leiden, vol 3, pp 156–157Google Scholar
  23. Landis WJ (1986) A study of calcification in the leg tendons from the domestic turkey. J Ultrastruct Res 94: 217–238CrossRefGoogle Scholar
  24. Linde A, Bhown M, Butler WT (1981) Non-collagenous proteins of rat dentin. Evidence that phosphoprotein is not covalently bound to collagen. Biochim Biophys Acta 667: 341–350PubMedGoogle Scholar
  25. Lukacs GL, Zs-Nagy I, Lustyik GY, Balazs GY (1983) Microfluorimetric and X-ray microanalytic studies on the DNA-content and Na/K ratios of the cell nuclei in various types of thyroid tumors. J. Cancer Res Clin Oncol 105: 280–284PubMedCrossRefGoogle Scholar
  26. Pugliarello MC, Vittur F, de Bernard B, Bonucci E, Ascenzi A (1970) Chemical modifications in osteones during calcification. Calcif Tissue Res 5: 108–114PubMedCrossRefGoogle Scholar
  27. Pugliarello MC, Vittur F, de Bernard B, Bonucci E, Ascenzi A (1973) Analysis of bone composition at the microscopic level. Calcif Tissue Res 12: 209–216PubMedCrossRefGoogle Scholar
  28. Quint P, Althoff J, Höhling HJ (1977) Topochemical analysis of a mineralizing collagen-rich system. Naturwissenschaften 64: 389PubMedCrossRefGoogle Scholar
  29. Quint P, Althoff J, Höhling HJ, Boyde A, Laabs WA (1980) Characteristic molar ratios of magnesium, carbon dioxide, calcium and phosphorus in the mineralizing fracture callus and predentine. Calcif Tissue Int 32: 257–261PubMedCrossRefGoogle Scholar
  30. Quint P, Althoff J, Roessner A, Grundmann E, Höhling HJ (1988) Kombinierte biochemische und histologische Untersuchungen verschiedener Typen von Osteosarkomen. In: Heuck HW, Keck E (eds) Fortschritte der Osteologie in Diagnostik und Therapie. Springer, Berlin Heidelberg New York, pp 154–160Google Scholar
  31. Rath NC, Hand AR, Reddi AH (1981) Activity and distribution of lysosomal enzymes during collagenous matrix-induced cartilage, bone and bone marrow development. Dev Biol 85: 89–98PubMedCrossRefGoogle Scholar
  32. Reddi AH (1981) Cell biology and biochemistry of endochondral bone development. Collagen Rel Res 1: 209–226Google Scholar
  33. Roessner A (1984) Zur Cyto- und Histogenese der malignen und semimalignen Knochentumoren. Veröffentlichungen aus der Pathologie H. 122. Gustav Fischer, StuttgartGoogle Scholar
  34. Roessner A, Immenkamp M, Hiddemann W, Althoff J, Miebs T, Grundmann E (1985) Small cell osteosarcoma of the tibia with diffuse metastatic disease. Skeletal Radiol 14: 216–225PubMedCrossRefGoogle Scholar
  35. Rozengurt E (1980) Stimulation of DNA synthesis in quiescent cultured cells: exogenous agents, internal signals, and early events. Curr Top Cell Regul 17: 59–88PubMedGoogle Scholar
  36. Schlüter E (1978) Die Ultrastruktur der Knorpelmineralisation am Beispiel der bipolaren proximalen Ulnawachstumsfuge des Hausschweins. Doctoral Thesis, University of MünsterGoogle Scholar
  37. Schmidt A, Rodegerdts U, Buddecke E (1978) Correlation of lysozyme activity with proteoglycan biosynthesis in epiphyseal cartilage. Calcif Tissue Res 26: 163–172PubMedCrossRefGoogle Scholar
  38. Urist MR, DeLange RJ, Fineman GAM (1983) Bone cell differentiation and growth factors. Science 220: 680–686PubMedCrossRefGoogle Scholar
  39. Wuthier RE (1969) A zonal analysis of inorganic and organic constituents of epiphysis during enchondral calcification. Calcif Tissue Res 4: 20–38PubMedCrossRefGoogle Scholar
  40. Zs-Nagy I, Toth L, Szallasi Z, Lampe I (1987) On the possible role of intracellular sodium in mitogenesis: X-ray microanalytic measurements of the sodium to potassium ratio in human laryngeal tumors. J Cancer Res Clin Oncol 113: 197–202CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • J. Althoff
  • P. Quint
  • H. J. Höhling
  • A. Roessner
  • E. Grundmann

There are no affiliations available

Personalised recommendations