Transformation in Cotton

  • E. Firoozabady
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 9)


Genetic transformation systems developed for a variety of plants (see the review by Fraley et al. 1986) have the potential to be used to improve the agronomic performance of crop species. Cotton breeders have selected for resistance to pests and stresses, earliness, fiber characteristics, and morphological traits. It is envisaged that during the next decade, biotechnology (Bajaj and Gill 1987) and, in particular, genetic transformation will open new avenues for the production of improved cultivars of cotton. A number of potential applications of genetic engineering for cotton improvement will be discussed in a later section.


Somatic Embryo Gossypium Hirsutum Upland Cotton Boll Weevil Sterculic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bajaj YPS, Gill MS (1985) In vitro induction of genetic variability in cotton (Gossypium spp.). Theor Appl Genet 70: 363–368Google Scholar
  2. Bajaj YPS, Gill MS (1986) Micropropagation and germplasm preservation of cotton (Gossypium spp.) through shoot tip and meristem culture. Indian J Exp Biol 24: 581–583Google Scholar
  3. Bajaj YPS, Gill MS (1987) Biotechnology of cotton improvement. In: Crocomo OJ, Sharp WR, Evans DA, Bravo JE, Tavares FCA, Paddock EF (eds) Biotechnology of Plants and Microorganisms. Ohio State Univ Press, Columbus, pp 118–151Google Scholar
  4. Barton KA, Binns AN, Matzke AJ, Chilton M-D (1983) Regeneration of intact tobacco plant containing full length copies of genetically engineered T-DNA, and transmission of T-DNA to R1 progeny. Cell 32: 1033–1043PubMedCrossRefGoogle Scholar
  5. Berger J (1969) The world’s major fibre crops, their cultivation and manuring. Conzett & Huber, ZürichGoogle Scholar
  6. Cotton: World Statistics (1987) Bulletin of the International Cotton Advisory Committee Vol 40:25–39Google Scholar
  7. Cramer HH (1967) Plant protection and world crop production. Bayer Leverkusen, W-GermanyGoogle Scholar
  8. Davidonis GH, Hamilton RH (1983) Plant regeneration from callus tissue of Gossypium histutum L. Plant Sci Lett 32: 89–93CrossRefGoogle Scholar
  9. Deterling D (1987) Genetic engineers promise pest-resistant varieties. Progr Farmer 102:Cotton 12–13 FAO (ed) (1986) 1985 FAO production yearbook 39: 151–155Google Scholar
  10. FAO (ed) (1987) Monthly Bull Stat 10: Tab 4, 14Google Scholar
  11. Farm Chemicals (ed) (1985) A look at world pesticide markets. Farm Chem 148: 26–34Google Scholar
  12. Fillatti JJ, Kiser J, Rose R, Comai L (1987) Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector. Biotechnology 5: 726–730CrossRefGoogle Scholar
  13. Firoozabady E, Galbraith DW (1984) Presence of a plant cell wall is not required for transformation of Nicotiana by Agrobacterium tumefaciens. Plant Cell Tissue Org Cult 3: 175–188CrossRefGoogle Scholar
  14. Firoozabady E, DeBoer D, Maroney M (1986) Transformation and regeneration of cotton, Gossypium hisrutum L. Tailoring Genes for Crop Improvement: An Agricultural prospective. Univ Cal, Davis, Abstr p 24Google Scholar
  15. Firoozabady E, DeBoer DL, Murray EE, Merlo DJ, Adang MJ, Halk EL (1987a) Transformation of cotton (Gossypium hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants. In Vitro 23: 67AGoogle Scholar
  16. Firoozabady E, DeBoer DL, Merlo DJ, Halk EL, Amerson LN, Rashka KE, Murray EE (1987b) Transformation of cotton (Gossypium hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants. Plant Mol Biol 10: 105–116CrossRefGoogle Scholar
  17. Firoozabady E, DeBoer DL, Amerson LN, Halk EL, Murray EE, Rashka KE, Merlo DJ (1988) Regeneration of cotton (Gossypium hirsutum L.) plants transformed by Agrobacterium tumefaciens In: Angarita AZ (ed) Int Congr Plant tissue culture-tropical species, Phytoclone, Bogota, Colombia (in press)Google Scholar
  18. Fraley RT, Rogers SG, Horsch RB (1986) Genetic transformation in higher plants. CRC Crit Rev Plant Sci 4: 1–46CrossRefGoogle Scholar
  19. Fryxell PA (1980) The natural history of the cotton tribe. Texas A & M Univ Press, College Stn, Texas Gawel NJ, Rao AP, Robacker CD (1986) Somatic embryogenesis from leaf and petiole callus cultures of Gossypium hirsutum. Plant Cell Rep 5: 457–459Google Scholar
  20. Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir-and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature (Lond) 303: 179–180CrossRefGoogle Scholar
  21. Horsch RB, Fry JE, Hoffmann NL, Wallroth M, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227: 1229–1231CrossRefGoogle Scholar
  22. King EG, Phillips JR, Hend RB (1987) 40th annual conference report on cotton insect research and control. 1987 Proc Beltwide Cotton Prod Res Conf, pp 170–192Google Scholar
  23. Klee HJ, Gordon MD, Nester EW (1982) Complementation analysis of Agrobacterium tumefaciens Ti-plasmid mutations affecting oncogenicity. J Bacteriol 150: 327–331PubMedGoogle Scholar
  24. Marton L, Wullems GJ, Molendijk L, Schilperoort RA (1979) In vitro transformation of cultured cells from Nicotiana tabacum by Agrobacterium tumefaciens. Nature (Lond) 277: 129–131CrossRefGoogle Scholar
  25. McCormick S, Niedermeyer J, Fry J, Barnason A, Horsch R, Fraley R (1986) Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep 5: 81–84CrossRefGoogle Scholar
  26. Ridgway RL, Bell AA, Veech JA, Chandler JM (1984) Cotton protection practices in the USA and world. In: Kohel RJ, Lewis CF (eds) Cotton. Agronomy No. 24, American Society of Agronomy Madison, Wisconsin, pp 265–365Google Scholar
  27. Scarpelli DG (1974) Mitogenic activity of sterculic acid, a cyclopropenoid fatty acid. Science 185: 958–959PubMedCrossRefGoogle Scholar
  28. Shahin EA, Simpson R (1986) Gene transfer system for potato. HortScience 21: 1199–1201Google Scholar
  29. Shahin EA, Spielmann A, Sukhapinda K, Simpson R, Yashar M (1986) Transformation of cultivated alfalfa using disarmed Agrobacterium tumefaciens. Crop Sci 26: 1235–1239CrossRefGoogle Scholar
  30. Shoemaker RC, Couche LJ, Galbraith DW (1986) Characterization of somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Rep 3: 178–181CrossRefGoogle Scholar
  31. Sukhapinda K, Spivey R, Simpson RB, Shahin EA (1987) Transgenic tomato (Lycopersicon esculentum L.) transformed with a binary vector in Agrobacterium rhizogenes: Non-chimeric origin of callus clone and low copy numbers of integrated vector T-DNA. Mol Gen Genet 206: 491–497CrossRefGoogle Scholar
  32. Trolinder NL, Goodin JR (1987) Somatic embryogenesis and plant-regeneration in cotton (Gossypium hirsutum L.). Plant Cell Rep 6: 231–234CrossRefGoogle Scholar
  33. Umbeck P, Johnson G, Barton K, Swain W (1987) Genetically transformed cotton (Gossypium hirsutum L.) plants. BioTechnology 5: 263–266CrossRefGoogle Scholar
  34. USDA-Economic Research Service (ed) (1986) Cotton and wool situation and outlook yearbook, vol 46, p 6Google Scholar
  35. USDA-National Agricultural Statistical Service (ed) (1987) Crop production, vol CrPr 2–2 (5–87), pp A-16, A-17Google Scholar
  36. Watkins GM (1981) Compendium of cotton diseases. Am Phytopathol Soc, St Paul, MinnGoogle Scholar
  37. Zhou GA’, Weng J, Zeng Y, Huang J, Qian S, Liu G (1983) Introduction of exogenous DNA into cotton embryos. Meth Enzymol 101: 433–481CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • E. Firoozabady
    • 1
  1. 1.Plant Genetic Engineering LaboratoryNew Mexico State UniversityLas CrucesUSA

Personalised recommendations