DNA Recombinants and Transformation of Agricultural Crops

  • J. Simpson
  • L. Herrera-Estrella
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 9)


Biotechnology offers several potential benefits in agriculture. Two main areas of interest are: (1) the production of improved food crops and (2) the utilization of plants for the production of commercially important products, as is routine in yeasts and other microorganisms. In order to realize the potential of plant genetic engineering, systems which allow the transfer and expression of foreign genes into plant cells must be developed. To date, three main avenues of investigation have been followed to develop such systems, these are: the use of viral vectors, naked DNA transformation, and the natural gene transfer system of Agrobacterium tumefaciens.


Crown Gall Chloramphenicol Acetyl Transferase Dominant Selectable Marker Crown Gall Tissue Chimaeric Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abel PP, Powell P, Nelson RS, De B, Hoffman N, Rogers SG, Fraley RT, Beachy RN (1986) Delay of discase development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232: 738–743PubMedGoogle Scholar
  2. An G (1986) Development of plant promoter expression vectors and their use for analysis of differen-tial activity of nopaline synthase promoter in transformed tobacco cells. Plant Physiol 81: 86–91PubMedGoogle Scholar
  3. Barker RF, Idler KB, Thompson DV, Kemp JD (1983) Nucleotide sequence of the T-DNA region from the Agrobacterium tumefaciens octopine Ti plasmid pTi15995. Plant Mol Biol 2: 335–350Google Scholar
  4. Barton KA, Binns AN, Matzke AJM, Chilton D-D (1983) Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA, and transmission of T-DNA to R1 progeny. Cell 32: 1033–1043PubMedGoogle Scholar
  5. Beachy RN, Chen Z-L, Horsch RB, Rogers SG, Hoffman JJ, Fraley RT (1985) Accumulation and assembly of soybean ß-conglycinin in seeds of transformed petunia plants. EMBO 4 (12): 3047–3053Google Scholar
  6. Bennett J, Jenkings GI, Hartley MR (1984) Differential regulation of the accumulation of the light-harvesting chlorophyll a/b complex and ribulose bisphosphate carboxylase/oxygenase in greening pea leaves. J Cell Biochem 25: 1–13PubMedGoogle Scholar
  7. Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucl Acids Res 12:8711– 8721PubMedGoogle Scholar
  8. Bevan M, Barnes WM, Chilton M-D (1983 a) Structure and transcription of the nopaline synthase gene region of T-DNA. Nucl Acids Res 11: 369–385Google Scholar
  9. Bevan MW, Flavell RB, Chilton M-D (1983b) A chimaeric antibiotic-resistance gene as a selectable marker for plant cell transformation. Nature (Lond) 304: 184–187Google Scholar
  10. Braun AC (1943) Studies on tumor inception in crown gall disease. Am J Bot 30: 674–677Google Scholar
  11. Braun AC (1978) Plant tumours Biochim Biophys Acta 516: 167–191Google Scholar
  12. Braun AC (1982) A history of the crown gall problem. In: Kahl G, Schell J (eds) Molecular biology of plant tumours. Academic Press, New York, pp 155–210Google Scholar
  13. Breathnach R, Chambon P (1981) Organization and expression of eukaryotic split genes coding for proteins. Annu Rev Biochem 50: 349–383PubMedGoogle Scholar
  14. Brisson N, Paszkowski J, Penswick JR, Gronenborn B, Potrykus I, Hohn T (1984) Expression of a bacterial gene in plants using a viral vector. Nature (Lond) 310: 511–514Google Scholar
  15. Chilton M-D, Drummond MH, Merlo DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid-DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11: 263–271PubMedGoogle Scholar
  16. Chilton M-D, Drummond MH, Merlo DJ, Sciaky D (1978) Highly conserved DNA of Ti-plasmids overlaps T-DNA, maintained in plant tumors. Nature (Lond) 275: 147–149Google Scholar
  17. Deak M, Kiss GB, Koncz C, Dudits D (1986) Transformation of Medicago by Agrobacterium-mediated gene transfer. Plant Cell Rep 5: 97–100Google Scholar
  18. De Beuckeleer M, Lemmers M, De Vos G, Willmitzer L, van Montagu M, Schell J (1981) Further insight on the transferred-DNA of octopine crown gall. Mol Gen Genet 183: 283–288PubMedGoogle Scholar
  19. De Blaere R, Bytebier B, De Greve H, Deboek F, Schell J, van Montagu M, Leemans J (1985) Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. NAR 13 (13):4777–4788Google Scholar
  20. De Block M, Herrera-Estrella L, van Montagu M, Schell J, Zambryski P (1984) Expression of foreign genes in regenerated plants and their progeny. EMBO J 3: 1681–1689PubMedGoogle Scholar
  21. De Block M, Schell J, van Montagu M (1985) Chloroplast transformation by Agrobacterium tumefaciens. EMBO J 4: 1367–1372PubMedGoogle Scholar
  22. De Block M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gossele V, Rao Movva N, Thompson C, Van Montagu M, Leemans J (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6 (9): 2513–2518PubMedGoogle Scholar
  23. De Frammond AJ, Barton KA, Chilton M-D (1983) Mini Ti: a new vector strategy for plant genetic engineering. Biotechnology 1: 262–269Google Scholar
  24. De Greve H, Decraemer H, Seurinck J, Van Montagu M, Schell J (1981) The functional organization of the octopine Agrobacterium tumefaciens plasmid pTiB6S3. Plasmid 6: 235–248PubMedGoogle Scholar
  25. De Greve H, Dhaese P, Seurinck J, Lemmers M, van Montagu M, Schell J (1982) Nucleotide sequence and transcript map of the Agrobacterium tumefaciens. Ti plasmid-encoded octopine synthase gene. J Mol Appl Genet 1: 499–512PubMedGoogle Scholar
  26. De la Pena A, Lörz H, Schell J (1987) Transgenic rye plants obtained by injecting DNA into young floral tillers. Nature 325: 274–276Google Scholar
  27. Depicker A, Stachel S, Dhaese P, Zambryski P, Goodman HM (1982) Nopaline synthase: transcript mapping and DNA sequence. J Mol Appl Genet 1: 561–574PubMedGoogle Scholar
  28. Engler G, Depicker A, Meanhout R, Villarroel-Mandiola R, van Montagu M, Schell J (1981) Physical mapping of DNA base sequence-homologies between an octopine and nopaline Ti-plasmid of Agrobacterium tumefaciens. J Mol Biol 152: 183–208PubMedGoogle Scholar
  29. Fluhr R, Kuhlemeier C, Nagy F, Chua N-H (1986) Organ specific and light-induced expression of plant genes. Science 232: 1106–1112PubMedGoogle Scholar
  30. Fraley RT, Rogers SG, Horsch RB, Sanders P, Flick J, Adams S, Bittner M, Brand L, Fink C, Fry J, Gallupi G, Goldberg S, Hoffmann N, Woo S (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci USA 80: 4803–4807PubMedGoogle Scholar
  31. Fraley RT, Rogers SG, Horsch RB, Eichholtz DA, Flick JS, Fink CL, Hoffmann NL, Sanders PR (1985) The SEV system: a new disarmed Ti plasmid vector system for plant transformation. Biotechnology 3: 629–635Google Scholar
  32. Fromm ME, Taylor LP, Walbot V (1985) Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc Natl Acad Sci USA 82: 5824–5828PubMedGoogle Scholar
  33. Fromm ME, Taylor LP, Walbot V (1986) Stable transformation of maize after gene transfer by electrophoresis. Nature (Lond) 319: 791–793Google Scholar
  34. Gallagher TF, Ellis RJ (1982) Light-stimulated transcription of genes for two chloroplast polypeptides in isolated pea leaf nuclei. EMBO J 1: 1493–1498PubMedGoogle Scholar
  35. Garfinkel DJ, Simpson RB, Ream LW, White F, Gordon MP, Nester EW (1981) Genetic analysis of crown gall: Fine structure map of the T-DNA by site directed mutagenesis. Cell 27: 143–153PubMedGoogle Scholar
  36. Gielen J, De Beuckeleer M, Seurinck J, Dechboeck F, De Greve H, Lemmers M, van Montagu M, Schell J (1984) The complete nucleotide sequence of the TL-DNA of Agrobacterium tumefaciens plasmid pTiAch5. EMBO J 3: 825–846Google Scholar
  37. Gorman CM, Moffat LF, Howard BH (1982) Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol 2: 1044–1051PubMedGoogle Scholar
  38. Hain R, Stabel P, Czernilofsy AP, Steinkiss HH, Herrera-Estrella L, Schell J (1985) Uptake, integration, expression and genetic transmission of a selectable chimaeric gene by plant protoplasts. Mol Gen Genet 199 (2): 161–168Google Scholar
  39. Hepburn AG, Clarke LE, Blundy KS, White J (1983) Nopaline Ti plasmid, pTiT37, T-DNA insertions into a flax genome. J Mol Appl Genet 2: 211–224PubMedGoogle Scholar
  40. Hernalsteens JP, van Vliet F, De Beukeleer M, Depicker A, Engler G, Lemmers M, Holsters M, van Montagu M, Schell J (1980) The Agrobacterium tumefaciens Ti plasmid as a host vector system for introducing foreign DNA in plant cells. Nature (Lond) 287: 654–656Google Scholar
  41. Hernalsteens JP, Thia-Toong L, Schell J, van Montagu M (1984) An Agrobacterium-transformed cell culture from the monocot Asparagus officinalis. EMBO J 3: 3039–3041PubMedGoogle Scholar
  42. Herrera-Estrella L, Depicker A, van Montagu M, Schell J (1983a) Expression of chimaeric genes transferred into plant cells using a Ti plasmid-derived vector. Nature (Lond) 303: 209–213Google Scholar
  43. Herrera-Estrella L, De Block M, Nessens E, Hernalsteens J-P, van Montagu M, Schell J (1983b) Chimaeric genes as dominant selectable markers in plant cells. EMBO J 2: 987–995PubMedGoogle Scholar
  44. Herrera-Estrella L, van den Broeck G, Maenhaust R, van Montagu M, Schell J, Timko M, Cashmore A (1984) Light-inducible and chloroplast associated expression of a chimaeric gene introduced into Nicotiana tabacum using a Ti plasmid vector. Nature (Lond) 310: 115–120Google Scholar
  45. Hinchee MAW, Connor-Ward DV, Newell CA, McDonnell RE, Sato SJ, Grasser CS, Fischhoff DA, Re DB, Fraley RT, Horsch RB (1988) Production of transgenic soybean plants using Agrobacterium-mediated DNA transfer. Biotechnology 6: 915–922Google Scholar
  46. Hoekema A, Hirsch PR, Hooykas PJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir and T-region of the Agrobacterium tumefaciens Ti plasmid. Nature (Lond) 303: 179–181Google Scholar
  47. Hoekema A, van Haaren MJ, Fellinger AJ, Hooykas PJJ, Schilperoort RA (1985) Non-oncogenic plant vectors for use in the Agrobacterium binary system. Plant Mol Biol 5: 85–95Google Scholar
  48. Hoffman LM, Donaldson DD, Bookland R, Rashka K, Herman EM (1987) Synthesis and protein body deposition of maize 15-kd zein in transgenic tobacco seeds. EMBO J 6: 3213–3221PubMedGoogle Scholar
  49. Holsters M, Silva B, van Vliet F, Genetello C, De Block M, Dhaese P, Depicker A, Inzé D, Engler G, Villaroel R, van Montagu M, Schell J (1980) The functional organization of the nopaline A. tumefaciens plasmid pTiC58. Plasmid 3: 212–230PubMedGoogle Scholar
  50. Holsters M, Villaroel R, Gielen J, Seurinck J, De Greve H, van Montagu M, Schell J (1983) An analysis of the boundaries of the octopine TL-DNA in tumours induced by Agrobacterium tumefaciens. Mol Gen Genet 190: 35–41Google Scholar
  51. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227: 1229–1231Google Scholar
  52. Inzé D, Follin A, van Lijsebettens M, Simoens C, Genetello C, van Montagu M, Schell J (1984) Genetic analysis of the individual T-DNA genes of Agrobacterium tumefaciens; further evidence that two genes are involved in indole-3-acetic acid synthesis. Mol Gen Genet 194: 265–274Google Scholar
  53. Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion systems. Plant Mol Biol Rep 5: 387–405Google Scholar
  54. Jones JDG, Dunsmuir P, Bedbrook J (1985) High level expression of introduced chimeric genes in regenerated transformed plants. EMBO J 4: 2411–2418PubMedGoogle Scholar
  55. Joos H, Inzé D, Caplan A, Sormann M, van Montagu M, Schell J (1983) Genetic analysis of T-DNA transcripts in nopaline crown galls. Cell 32: 1057–1067PubMedGoogle Scholar
  56. Klein TM, Wolf ED, Wu R, Sanford JC (1987) High-velocity projectiles for delivering nucleic acids into living cells. Nature 327: 70–74Google Scholar
  57. Klein TM, Gradziel T, Fromm ME, Sanford JC (1988) Factors influencing gene delivery into Zea mays cells by high-velocity projectiles. Biotechnology 6: 559–563Google Scholar
  58. Koncz C, De Greve H, André D, Deboeck F, van Montagu M, Schell J (1983) The octopine synthase genes carried by Ti plasmids contain all signals necessary for expression in plants. EMBO 2: 1597–1603Google Scholar
  59. Koukolikovâ-Nicola A, Shillito RD, Hohn B, Wang K, van Montagu M, Zambryski P (1985) Involvement of circular intermediates in the transfer of T-DNA from Agrobacterium tumefaciens to plant cells. Nature (Lond) 313: 191–196Google Scholar
  60. Krens FA, Molenclijk L, Wullems GJ, Schilperoort RA (1982) In vitro transformation of plant protoplasts with Ti plasmid DNA. Nature (Lond) 296: 72Google Scholar
  61. Leemans J, Shaw C, Deblaere R, De Greve H, Hernalsteens J-P, Maes M, van Montagu M, Schell J (1981) Site-specific mutagenesis of Agrobacterium Ti plasmids and transfer of genes to plant cells. J Mol Appl Genet 1: 149–164PubMedGoogle Scholar
  62. Leemans J, Deblaere R, Willmitzer L, De Greve H, Hernalsteens J-P, van Montagu M, Schell J (1982) Genetic identification of functions of TL-DNA transcripts in octopine crown galls. EMBO J 1: 147–152PubMedGoogle Scholar
  63. Lemmers M, De Beuckeleer M, Holsters M, Zambryski P, Depicker A, Hernalsteens JP, van Montagu M, Schell J (1980) Internal organization, boundaries and integration of Ti-plasmid DNA in nopaline crown gall tumours. J Mol Biol 144: 353–376PubMedGoogle Scholar
  64. Li BJ, Langridge WHR, Szalay AA (1985) Somatic embryogenesis and plantlet regeneration in soybean Glycine max. Plant Cell Rept 4: 344–367Google Scholar
  65. Lörz H, Baker B, Schell J (1985) Gene transfer to cereal cells mediated by protoplast transformation Mol Gen Genet 199: 178Google Scholar
  66. Marton L, Wullems GJ, Molendijk L, Schilperoort RA (1979) In vitro transformation of cultured cells from Nicotiana tabacum by Agrobacterium tumefaciens Nature (Lond) 277:129–130Google Scholar
  67. McCormick S, Niedermeyer J, Fry J, Banason A, Horsch R, Fraley R (1986) Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens Plant Cell Rep 5:81–86Google Scholar
  68. McCabe DE, Swain WF, Martinell BJ, Christou P (1988) Stable transformation of soybean (Glycine max) by particle acceleration. Biotechnology 6: 923–926Google Scholar
  69. McGranahan GH, Leslie CA, Uratsu SL, Martin LA, Dandeker AM (1988) Agrobacterium-mediated transformation of walnut somatic embryos and regeneration of transgenic plants. Biotechnology 6:800–804Google Scholar
  70. Messing J, Geraghty D, Heidecker G, Hu N-T, Kridl J, Rubenstein I (1983) Plant gene structure. In: Kosuge T, Meredith CP, Hollaender A (eds) Genetic engineering of plants, and agricultural perspective. Plenum, New York, pp 211–227Google Scholar
  71. Morelli G, Nagy F, Fraley RT, Rogers SG, Chua N-H (1985) A short conserved sequence is involved in the light-inducibility of a gene encoding ribulose 1,5-bisphosphate carboxylase small subunit of pea. Nature (Lond) 315: 200–204Google Scholar
  72. Nagy F, Morelli G, Fraley RT, Rogers SG, Chua N-H (1985) Photo regulated expression of a pea rbcS gene in leaves of transgenic plants. EMBO J 4: 3063–3068PubMedGoogle Scholar
  73. Otten LA, Schilperoort RA (1978) A rapid microscale method for the detection of lysopine and nopaline dehydrogenase activities. Biochim Biophys Acta 527: 497–500PubMedGoogle Scholar
  74. Ow DW, Wood KV, De Luca M, De Wet JR, Helinski DR, Howl SH (1986) Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234:856–859PubMedGoogle Scholar
  75. Parsons TJ, Sinkar VP, Stetler RF, Nester EW, Gordon MP (1986) Transformation of poplar by Agrobacterium tumefaciens. Biotechnology 4 (6): 533–537Google Scholar
  76. Potrykus I, Saulk M, Petruska J, Paszkowski J, Shillito R (1985) Direct gene transfer to cells of a graminaceous monocot. Mol Gen Genet 199: 183–188Google Scholar
  77. Ranch JP, Oglesby L, Zielinski AC (1985) Plant regeneration from embryo-derived tissue cultures of soybeans. In Vitro Cell Dev Biol II: 653–658Google Scholar
  78. Reiss B, Sprengel R, Will H, Schaller H (1984) A new sensitive method for qualitative and quantitative assay of neomycin phospho-transferase in crude cell extracts. Gene 30: 211–218PubMedGoogle Scholar
  79. Rhodes CA, Pierce DA, Mettler IJ, Mascarenhas D, Detmer JL (1988) Genetically transformed maize plants from protoplasts. Science 240: 204–207PubMedGoogle Scholar
  80. Schröder G, Klipp W, Hillebrand A, Whring R, Koncz C, Schröder J (1983) The conserved part of the T-region in Ti-Plasmids expresses four proteins in bacteria. EMBO J 2: 403–409PubMedGoogle Scholar
  81. Schröder G, Waffenschmidt S, Wiler EW, Schröder J (1984) The T-region of Ti plasmids codes for an enzyme synthesizing indole-3-acetic acid. Eur J Biochem 138: 387–391PubMedGoogle Scholar
  82. Sengupta-Gopalan C, Reichert NA, Barker RF, Hall TC, Kemp JD (1985) Proc Natl Acad Sci USA 82: 3320–3324PubMedGoogle Scholar
  83. Serfling E, Jasin M, Schaffner W (1985) Enhancer and eukaryotic gene transcription. Trends Genet 1:224–230Google Scholar
  84. Shah DM, Horsch RB, Klee HJ, Kishore GM, Winter JA, Turner NE, Hironata CM, Sanders PR, Gasser CS, Ag Kent S, Siegel NR, Rogers SG, Fraley RT (1986) Engineering herbicide tolerance in trans-genic plants. Science 233: 478–481PubMedGoogle Scholar
  85. Shaw CH, Leemans J, Shaw CH, van Montagu M, Schell J (1983) A general method for the transfer of cloned genes to plant cells. Gene 23: 315–330PubMedGoogle Scholar
  86. Shaw CH, Watson MD, Carter GH, Shaw CH (1984) The right hand copy of the nopaline Ti-plasmid 25 bp repeat is required for tumour formation. Nucl Acids Res 12: 6031–6041PubMedGoogle Scholar
  87. Silverthorne J, Tobin EM (1984) Demonstration of transcriptional regulation of specific genes by phytochrome action. Proc Natl Acad Sci USA 81: 1112–1116PubMedGoogle Scholar
  88. Simoens C, Alliotte Th, Mendel R, Müller A, Schiemann J, van Lijsebettens M, Schell J, van Montagu M, Inzé D (1986) A binary vector for transferring genomic libraries to plants. Nucl Acids Res 14: 8073–8090PubMedGoogle Scholar
  89. Simpson RB, O’Hara PJ, Kwok W, Montoya AL, Lichtenstein C, Gordon MP, Nester EW (1982) DNA from the A6S/2 crown gall tumor contains scrambled Ti-plasmid sequences near its junctions with the plant DNA. Cell 29: 1005–1014PubMedGoogle Scholar
  90. Simpson J, Timko MP, Cashmore AR, Schell J, van Montagu M, Herrera-Estrella L (1985) Light-inducible and tissue-specific expression of a chimaeric gene under control of the 5’-flanking sequence of a pea chlorophyl a/b-binding protein gene. EMBO J 4: 2723PubMedGoogle Scholar
  91. Simpson J, van Montagu M; Herrera-Estrella L (1986) Photosynthesis associated gene families: Differences in response to tissue-specific and environmental factors. Science 233: 36–38Google Scholar
  92. Stachel SE, Timmerman B, Zambryski P (1987) Activation of Agrobacterium tumefaciens Vir gene expression generates multiple single-stranded T-strand molecules from the pTi A6 T-region: requirement for 5’ vir D gene products. EMBO J 4: 857–863Google Scholar
  93. Taylor BH, Amasino RM, White FF, Nester EW, Gordon MP (1985) T-DNA analysis of plants regenerated from hairy root tumours. Mol Gen Genet 201: 554–557Google Scholar
  94. Teeri T, Herrera-Estrella L, Depicker A, van Montagu M, Palva ET (1986) Identification of plant pro-moters in situ by T-DNA mediated transcriptional fusions to the npt-II gene. EMBO J 5: 1755–1760PubMedGoogle Scholar
  95. Tempé J, Petit A (1982) Opine utilization by Agrobacterium. In: Kahl G, Schell J (eds) Molecular biol-ogy of plant tumours. Academic Press, New York, pp 451–459Google Scholar
  96. Tepfer D (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 37: 959–967PubMedGoogle Scholar
  97. Thomashow MF, Nutter R, Montoya AL, Gordon MP, Nester EW (1980) Integration and organiza-tion of Ti-plasmid sequences in crown gall tumours. Cell 19: 729–739PubMedGoogle Scholar
  98. Thomashow L, Reeves S, Thomashow MF (1984) Crown gall oncogenesis: evidence that a T-DNA gene from Agrobacterium Ti plasmid pTiAG encodes an enzyme that catalyses synthesis of indoleacetic acid. Proc Natl Acad Sci USA, p 50–71Google Scholar
  99. Timko MP, Kausch AP, Castresana C, Fassler J, Herrera-Estrella L, van den Broeck G, van Montagu M, Schell J, Cashmore AR (1985) Light regulation of plant gene expression by an upstream enhancer-like element. Nature (Lond) 318: 579–582Google Scholar
  100. Toriyama K, Arimoto Y, Uchimaya H, Hinata K (1988) Transgenic rice plants after direct gene transfer into protoplasts. Biotechnology 6: 1072–1074Google Scholar
  101. Umbeck P, Johnson G, Barton K, Swain W (1988) Genetically transformed cotton (Gossypium hirsutum). Biotechnology 5: 263–266Google Scholar
  102. Ursic D, Slightom JL, Kemp JD (1983) Agrobacterium tumefaciens T-DNA integrates into multiple sites of the sunflower crown gall genome. Mol Gen Genet 190: 494–503Google Scholar
  103. van den Elzen P, Lee KY, Townsend J, Bedbrook JR (1985 a) Simple binary vectors for DNA transfer to plant cells. Plant Mol Biol 5: 149–154Google Scholar
  104. van den Elzen PJM, Townsend J, Lee KY, Bedbrook JR (1985b) A chimaeric hygromycin resistance gene as a selectable marker in plant cells. Plant Mol Biol 5: 299–302Google Scholar
  105. Van Haute E, Joos H, Maes M, Warren G, van Montagu M, Schell J (1983) Intergeneric transfer and exchange recombination of restriction fragments cloned in pBR322: a novel strategy for the reversed genetics of Ti plasmids of Agrobacterium tumefaciens. EMBO J 2: 411–418PubMedGoogle Scholar
  106. van Larebeke N, Engler G, Holsters M, van den Elsacker S, Zaenen I, Schilperoort RA, Schell J (1974) Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability. Nature (Lond) 252: 169–170Google Scholar
  107. Waldron C, Murphy EB, Roberts JL, Gustafson GD, Armour SL, Malcom SK (1985) Resistance to hygromycin B: a new marker for plant transformation studies. Plant Mol Biol 5: 103–108Google Scholar
  108. Wang K, Herrera-Estrella L, van Montagu M, Zambryski P (1984) Right 25-bp terminus sequences of the nopaline T-DNA is essential for and determines direction of DNA transfer from Agrobacterium to the plant genome. Cell 38: 455–462PubMedGoogle Scholar
  109. Watson B, Currier TC, Gordon MP, Chilton M-D, Nester EW (1975) Plasmid required for virulence of Agrobacterium tumefaciens. J Bacteriol 123: 255–264PubMedGoogle Scholar
  110. White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW (1985) Molecular and genetic analysis of the transferred DNA regions of the hairy root-inducing plasmid of Agrobacterium rhizogenes. J Bact Biol 164 (1): 33–44Google Scholar
  111. Willmitzer L, De Beuckeleer M, Lemmers M, van Montagu M, Schell J (1980) DNA from Ti-plasmid is present in the nucleus and absent from plastids of plant crown-gall cells. Nature (Lond) 287: 359–361Google Scholar
  112. Wullems GJ, Molendijk L, Ooms G, Schilperoort RA (1981) Differential expression of crown gall tumor markers in transformants obtained after in vitro Agrobacterium tumefaciens-induced transformation of cell wall regenerating protoplasts derived from Nicotiana tabacum. Proc Natl Acad Sci USA 78: 4344–4348PubMedGoogle Scholar
  113. Yadav NS, Vanderleyden J, Bennett DR, Barnes WM, Chilton M-D (1982) Short direct repeats flank the T-DNA on a nopaline Ti plasmid. Proc Natl Acad Sci USA 79: 6322–6325PubMedGoogle Scholar
  114. Yamada Y, Yang Z-Q, Tang D T (1986) Plant regeneration from protoplast derived callus of rice (Oryza sativa L.). Plant Cell Rep 5: 85–88Google Scholar
  115. Zaenen I, van Lerebeke N, Teuchy H, van Montagu M, Schell J (1974) Supercoiled circular DNA in crown gall-inducing Agrobacterium strains. J Mol Biol 86: 109–127PubMedGoogle Scholar
  116. Zambryski P, Holsters M, Kriger K, Depicker A, Schell J, van Montagu M, Doodman HM (1980) Tu-mor DNA structure in plant cells transformed by A. tumefaciens. Science 209: 1385–1391PubMedGoogle Scholar
  117. Zambryski P, Depicker A, Kriger K, Goodman H (1982) Tumor induction by Agrobacterium tumefa-ciens: analysis of the boundaries of T-DNA, J Mol Appl Genet 1: 361–370PubMedGoogle Scholar
  118. Zambryski P, Joos H, Genetello C, Leemans J, van Montagu M, Schell J (1983) Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J 2: 2143–2150PubMedGoogle Scholar
  119. Zambryski P, Herrera-Estrella L, De Block M, van Montagu M, Schell J (1984) The use of the Ti plasmid of Agrobacterium to study the transfer and expression of foreign DNA in plant cells: new vectors and methods. In: Setlow J, Hollaender A (eds) Genetic engineering, principles and methods (Vol. 6 ). Plenum, New York, pp 253–278Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • J. Simpson
  • L. Herrera-Estrella
    • 1
  1. 1.Centro de Investigación y de EstudiosAvanzados del I.P.N. Unidad IrapuatoIrapuatoMéxico

Personalised recommendations