Advertisement

Transfer of Mitochondria Through Protoplast Fusion

  • H. Ichikawa
  • L. Tanno-Suenaga
  • J. Imamura
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 9)

Abstract

The application of improved organelle or DNA isolation procedures and recombinant DNA technologies has led us to a more detailed understanding of higher plant mitochondrial genomes in the last decade. Mitochondrial genomes of higher plants are much larger in size than those of yeasts, fungi, and animals, and are variable, ranging from about 200 kb in Brassica and Oenothera to about 2400 kb in muskmelon (Ward et al. 1981; Leaver and Gray 1982; Levings 1983). Notwithstanding the larger size of plant mitochondrial DNA’s (mtDNA’s), the number of mitochondrial genes are thought to be similar compared with those of the other eukaryotes (Dawson et al. 1986; EcKenrode and Levings 1986). The mitochondrial genomes in some higher plants characterized so far, however, contain some direct repeat elements. Intramolecular recombinations through the direct repeats appear to produce the complex structure of plant mtDNA’s (Palmer and Shields 1984; Pring and Lonsdale 1985; Quetier et al. 1985).

Keywords

Mitochondrial Genome Cytoplasmic Male Sterility Somatic Hybrid Protoplast Fusion Somatic Hybrid Plant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asahi T, Kumashiro T, Kubo T (1988) Constitution of mitochondrial and chloroplast genomes in male sterile tobacco obtained by protoplast fusion of Nicotiana tabacum and N. debneyi. Plant Cell Physiol 29: 43–49Google Scholar
  2. Aviv D, Bleichman S, Arzee-Gonen P, Galun E (1984a) Interspecific cytoplasmic hybrids in Nicotiana. Identification of plastomes and chondriomes in N. sylvestris+N. rustica cybrids having N. sylvestris nuclear genomes. Theor Appl Genet 67: 499–504CrossRefGoogle Scholar
  3. Aviv D, Arzee-Gonen P, Bleichman S, Galun E (1984b) Novel alloplasmic Nicotiana plants by “donor-recipient” protoplast fusion: cybrids having N. tabacum or N. sylvestris nuclear genomes and either or both plastomes and chondriomes from alien species. Mol Gen Genet 196: 244–253CrossRefGoogle Scholar
  4. Barsby TL, Chuong PV, Yarrow SA, Wu S-C, Coumans M, Kemble RJ, Powell AD, Beversdorf WD, Pauls KP (1987 a) The combination of Polima cms and cytoplasmic triazine resistance in Brassica napus. Theor Appl Genet 73: 809–814CrossRefGoogle Scholar
  5. Barsby TL, Yarrow SA, Kemble RJ, Grant I (1987 b) The transfer of cytoplasmic male sterility to winter-type oilseed rape (Brassica napus L.) by protoplast fusion. Plant Sci 53: 243–248CrossRefGoogle Scholar
  6. Bayliss MW (1975) The effect of growth in vitro on the chromosome complement of Daucus carota (L.) suspension cultures. Chromosoma 51: 401–411CrossRefGoogle Scholar
  7. Belliard G, Vedel F, Pelletier G (1979) Mitochondrial recombination in cytoplasmic hybrids of Nicotiana tabacum by protoplast fusion. Nature (Lond) 281: 401–403CrossRefGoogle Scholar
  8. Boeshore ML, Lifshitz I, Hanson MR, Izhar S (1983) Novel composition of mitochondrial genomes in Petunia somatic hybrids derived from cytoplasmic male sterile and fertile plants. Mol Gen Genet 190: 459–467CrossRefGoogle Scholar
  9. Boeshore ML, Hanson MR, Izhar S (1985) A variant mitochondrial DNA arrangement specific to Petunia stable sterile somatic hybrids. Plant Mol Biol 4: 125–132CrossRefGoogle Scholar
  10. Chétrit P, Mathieu C, Vedel F, Pelletier G, Primard C (1985) Mitochondrial DNA polymorphism induced by protoplast fusion in Cruciferae. Theor Appl Genet 69: 361–366CrossRefGoogle Scholar
  11. Chuong PV, Beversdorf WD, Powell AD, Pauls KP (1988) Somatic transfer of cytoplasmic traits in Brassica napus L. by haploid protoplast fusion. Mol Gen Genet 211: 197–201CrossRefGoogle Scholar
  12. Clark E, Schnabelrauch L, Hanson MR, Sink KC (1986) Differential fate of plastid and mitochondrial genomes in Petunia somatic hybrids. Theor Appl Genet 72: 748–755CrossRefGoogle Scholar
  13. Dawson AJ, Jones VP, Leaver CJ (1986) Strategies for the identification and analysis of higher plant mitochondrial genes. Meth Enzymol 118: 470–488CrossRefGoogle Scholar
  14. DeBonte LR, Matthews BF (1984) Rapid isolation and purification of plastid and mitochondrial DNA from carrot cell suspensions. Plant Mol Biol Rep 2: 32–36CrossRefGoogle Scholar
  15. D’Hont A, Quetier F, Teoule E, Dattee Y (1987) Mitochondrial and chloroplast DNA analysis of in-terspecific somatic hybrids of a Leguminosae: Medicago (alfalfa). Plant Sci 53: 237–242CrossRefGoogle Scholar
  16. Dudits D, Hadlaczky Gy, Levi E, Fejer O, Haydu Zs, Lazar G (1977) Somatic hybridization of Daucus carota and D. capillifolius by protoplast fusion. Theor Appl Genet 51: 127–132Google Scholar
  17. EcKenrode VK, Levings CS III (1986) Maize mitochondrial genes. In Vitro Cell Dev Biol 22:169–176.CrossRefGoogle Scholar
  18. Fluhr R, Aviv D, Galun E, Edelman M (1984) Generation of heteroplastidic Nicotiana cybrids by protoplast fusion: analysis for plastid recombinant types. Theor Appl Genet 67: 491–497CrossRefGoogle Scholar
  19. Galun E, Arzee-Gonen P, Fluhr R, Edelman M, Aviv D (1982) Cytoplasmic hybridization in Nicotiana: mitochondrial DNA analysis in progenies resulting from fusion between protoplasts having different organelle constitutions. Mol Gen Genet 186: 50–56PubMedCrossRefGoogle Scholar
  20. Hanson MR, Conde MF (1985) Functioning and variation of cytoplasmic genomes: lessons from cytoplasmic-nuclear interactions affecting male fertility in plants. Int Rev Cytol 94: 213–267CrossRefGoogle Scholar
  21. Ichikawa H, Tanno-Suenaga L, Imamura J (1987) Selection of Daucus cybrids based on metabolic complementation between X-irradiated D. capillifolius and iodoacetamide-treated D. carota by somatic cell fusion. Theor Appl Genet 74: 746–752CrossRefGoogle Scholar
  22. Kao KN, Michayluk MR (1974) A method for high frequency intergeneric fusion of plant protoplasts. Planta 115: 355–367CrossRefGoogle Scholar
  23. Kemble RJ, Barsby TL, Wong RSC, Shepard JF (1986) Mitochondrial DNA rearrangements in somatic hybrids of Solanum tuberosum and Solanum brevidens. Theor Appl Genet 72: 787–793CrossRefGoogle Scholar
  24. Kothari SL, Monte DC, Widholm JM (1986) Selection of Daucus carota somatic hybrids using drug resistance markers and characterization of their mitochondrial genomes. Theor Appl Genet 72: 494–502CrossRefGoogle Scholar
  25. Kumashiro T, Kubo T (1986) Cytoplasm transfer of Nicotiana debneyi to N. tabacum by protoplast fusion. Jpn J Breed 36: 39–48Google Scholar
  26. Leaver CJ, Gray MW (1982) Mitochondria] genome organization and expression in higher plants. An-nu Rev Plant Physiol 33: 373–402CrossRefGoogle Scholar
  27. Levings CS III (1983) The plant mitochondrial genome and its mutants. Cell 32: 659–661PubMedCrossRefGoogle Scholar
  28. Lonsdale DM (1987) Cytoplasmic male sterility: a molecular perspective. Plant Physiol Biochem 25: 265–271Google Scholar
  29. Lonsdale DM, Hodge TP, Fauron CM (1984) The physical map and organization of the mitochondrial genome from the fertile cytoplasm of maize. Nucleic Acids Res 12: 9249–9261PubMedCrossRefGoogle Scholar
  30. Maliga P (1986) Cell fusion to introduce genetic information coded by chloroplasts and mitochondria in flowering plants. In: Bogorad L (ed) Molecular developmental biology. Liss, New York, pp 45–53Google Scholar
  31. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Lab, New YorkGoogle Scholar
  32. Matthews BF, DeBonte LR (1985) Chloroplast and mitochondria] DNAs of the carrot and its wild relatives. Plant Mol Biol Rep 3: 12–16CrossRefGoogle Scholar
  33. Matthews BF, Widholm JM (1985) Organelle DNA composition and isoenzyme expression in an interspecific somatic hybrid of Daucus. Mol Gen Genet 198: 371–376CrossRefGoogle Scholar
  34. Medgyesy P, Golling R, Nagy F (1985) A light sensitive recipient for the effective transfer of chloro-plast and mitochondrial traits by protoplast fusion in Nicotiana. Theor Appl Genet 70: 590–594CrossRefGoogle Scholar
  35. Menczel L, Galiba G, Nagy F, Maliga P (1982) Effect of radiation dosage on efficiency of chloroplast transfer by protoplast fusion in Nicotiana. Genetics 100: 487–495PubMedGoogle Scholar
  36. Menczel L, Polsby LS, Steinback KE, Maliga P (1986) Fusion-mediated transfer of triazine-resistant chloroplasts: Characterization of Nicotiana tabacum cybrid plants. Mol Gen Genet 205: 201–205CrossRefGoogle Scholar
  37. Menczel L, Morgan A, Brown S, Maliga P (1987) Fusion-mediated combination of Ogura-type cytoplasmic male sterility with Brassica napus plastids using X-irradiated CMS protoplasts. Plant Cell Rep 6: 98–101Google Scholar
  38. Morgan A, Maliga P (1987) Rapid chloroplast segregation and recombination of mitochondrial DNA in Brassica cybrids. Mol Gen Genet 209: 240–246PubMedCrossRefGoogle Scholar
  39. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15: 473–497CrossRefGoogle Scholar
  40. Nagy F, Torok I, Maliga P (1981) Extensive rearrangements in the mitochondrial DNA in somatic hybrids of Nicotiana tabacum and Nicotiana knightiana. Mol Gen Genet 183: 437–439CrossRefGoogle Scholar
  41. Nagy F, Lazar G, Menczel L, Maliga P (1983) A heteroplasmic state induced by protoplast fusion is a necessary condition for detecting rearrangements in Nicotiana mitochondrial DNA. Theor Appl Genet 66: 203–207CrossRefGoogle Scholar
  42. Newton KJ, Coe EH Jr (1986) Mitochondrial DNA changes in abnormal growth (nonchromosomal stripe) mutants of maize. Proc Natl Acad Sci USA 83: 7363–7366PubMedCrossRefGoogle Scholar
  43. Nishibayashi S, Kaeriyama J (1986) Structural stability of chromosomes in rice (Oryza sativa L.) plants regenerated from somatic tissue culture. Plant Tissue Cult Lett 3: 31–34CrossRefGoogle Scholar
  44. O’Connell MA, Hanson MR (1986) Regeneration of somatic hybrid plants formed between Lycopersicon esculentum and Solanum rickii. Theor Appl Genet 72: 59–65Google Scholar
  45. Ozias-Akins P, Pring DR, Vasil IK (1987) Rearrangements in the mitochondrial genome of somatic hybrid cell lines of Pennisetum americanum (L.) K. Schum+Panicum maximum Jacq. Theor Appl Genet 74: 15–20CrossRefGoogle Scholar
  46. Palmer JD, Shields CR (1984) Tripartite structure of the Brassica campestris mitochondrial genome. Nature (Lond) 307: 437–440CrossRefGoogle Scholar
  47. Pring DR, Lonsdale DM (1985) Molecular biology of higher plant mitochondrial DNA. Int Rev Cytol 97: 1–46CrossRefGoogle Scholar
  48. Quetier F, Lejeune B, Delorme S, Falconet D (1985) Molecular organization and expression of the mitochondrial genome of higher plants. In: Douce R, Day DA (eds) Encyclopedia of plant physiology, New Ser, vol 18. Springer, Berlin Heidelberg New York Tokyo, pp 25–36Google Scholar
  49. Robertson D, Palmer JD, Earle ED, Mutschler MA (1987) Analysis of organelle genomes in a somatic hybrid derived from cytoplasmic male-sterile Brassica oleracea and atrazine-resistant B. campestris. Theor Appl Genet 74: 303–309CrossRefGoogle Scholar
  50. Rothenberg M, Boeshore ML, Hanson MR, Izhar S (1985) Intergenornic recombination of mitochondrial genomes in a somatic hybrid plant. Curr Genet 9: 615–618CrossRefGoogle Scholar
  51. Shepard JF, Bidney D, Barsby T, Kemble R (1983) Genetic transfer in plants through interspecific protoplast fusion. Science 219: 683–688PubMedCrossRefGoogle Scholar
  52. Sidorov VA, Menczel L, Nagy F, Maliga P (1981) Chloroplast transfer in Nicotiana based on metabolic complementation between irradiated and iodoacetate treated protoplasts. Planta 152: 341–345CrossRefGoogle Scholar
  53. Tabaeizadeh Z, Pring DR, Vasil IK (1987) Analysis of mitochondria] DNA from somatic hybrid cell lines of Saccharum officinarum (sugarcane) and Pennisetum americanum (pearl millet). Plant Mol Biol 8: 509–513CrossRefGoogle Scholar
  54. Vardi A, Breiman A, Galun E (1987) Citrus cybrids: production by donor-recipient protoplast-fusion and verification by mitochondrial-DNA restriction profiles. Theor Appl Genet 75: 51–58CrossRefGoogle Scholar
  55. Vedel F, Chétrit P, Mathieu C, Pelletier G, Primard C (1986) Several different mitochondrial DNA regions are involved in intergenomic recombination in Brassica napus cybrid plants. Curr Genet 11: 17–24CrossRefGoogle Scholar
  56. Vedel F, Mathieu C, Chétrit P, Pelletier G, Primard C (1987) Mitochondria) DNA variation in cytoplasmic male sterile somatic hybrids of Brassica napus. Plant Physiol Biochem 25: 249–257Google Scholar
  57. Ward BL, Anderson RS, Bendich AJ (1981) The mitochondrial genome is large and variable in a fami-ly of plants ( Cucurbitaceae ). Cell 25: 793–803PubMedCrossRefGoogle Scholar
  58. Yarrow SA, Wu SC, Barsby TL, Kemble RJ, Shepard JF (1986) The introduction of CMS mitochondria to triazine tolerant Brassica napus L., var. “Regent”, by micromanipulation of individual heterokaryons. Plant Cell Rep 5: 415–418CrossRefGoogle Scholar
  59. Zelcer A, Aviv D, Galun E (1978) Interspecific transfer of cytoplasmic male sterility by fusion between protoplasts of normal Nicotiana sylvestres and X-ray irradiated protoplasts of male-sterile N. tabacum. Z Pflanzenphysiol 90: 397–407Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • H. Ichikawa
  • L. Tanno-Suenaga
  • J. Imamura
    • 1
  1. 1.Plantech Research InstituteMidori-ku, Yokohama, 227Japan

Personalised recommendations