Chloroplast Genomes as Genetic Markers

  • S. D. Kung
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 9)

Abstract

All biological phenomena are the consequences of a coordinated expression of the genome. Many molecules have been identified as the products of certain genes. Thus, they can be used to study genomic structure, function, regulation, and evolution. Proteins of various sources are the major macromolecules which have for decades been used successfully as genetic markers (Kung 1976). The ultimate molecular marker for studying the evolution of genes is the gene itself. Therefore, DNA molecules are the ideal markers for phylogenetic investigations. In plants, there are three separate genomes: nuclear, chloroplast, and mitochondrial. In this chapter, the primary focus is placed on the properties and application of the chloroplast genome as genetic markers.

Keywords

Maize Chlorophyll Codon Agarose Glycine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atchison BA, Whitfield PR, Bottomley W (1976) Comparison of chloroplast DNAs by specific fragmentation with EcoRI endonuclease. Mol Gen Genet 148: 263–269CrossRefGoogle Scholar
  2. Bisaro D, Siegal A (1980) Sequence homology between chloroplast DNAs of several higher plants. Plant Physiol 65: 234–237PubMedCrossRefGoogle Scholar
  3. Bowman CM, Koller B, Delius H, Dyer TA (1981) A physical map of wheat chloroplast DNA showing the location of the structural genes for the ribosomal RNAs and the large subunit of ribulose1,5-bisphosphate carboxylase. Mol Gen Genet 183:93–101Google Scholar
  4. Bowman CM, Bonnard G, Dyer TA (1983) Chloroplast DNA variation between species of Triticum and Aegilops. Location of the variation on the chloroplast genome and its relevance to the inheritance and classification of the cytoplasm. Theor Appl Genet 65: 247–262Google Scholar
  5. Carlson PS, Smith HH, Dearing RD (1972) Parasexual interspecific plant hybridization. Proc Natl Acad Sci USA 69: 2292–2294PubMedCrossRefGoogle Scholar
  6. Chen K, Wildman SG, Smith HH (1977) Chloroplast DNA distribution in parasexual hybrids as shown by polypeptide composition of fraction I protein. Proc Natl Acad Sci USA 74: 5109–5112PubMedCrossRefGoogle Scholar
  7. Chiba Y (1951) Cytochemical studies on chloroplasts. I. Cytologic demonstration of nucleic acids in chloroplasts. Cytologia 16: 259–264CrossRefGoogle Scholar
  8. Chu NM, Tewari KK (1982) Arrangement of the ribosomal RNA genes in chloroplast DNA of Leguminoseae. Mol Gen Genet 186: 23–32CrossRefGoogle Scholar
  9. Clegg MT, Rawson JRY, Thomas K (1984) Chloroplast DNA variation in pearl millet and related species. Genetics 106: 449–461PubMedGoogle Scholar
  10. Coates D, Cullis CA (1987) Chloroplast DNA variability among Linum species. Am J Bot 74 (2): 260–268CrossRefGoogle Scholar
  11. Crouse EJ, Schmidt JM, Bohnert HJ (1985) Chloroplast and cyanobacterial genomes, genes and tRNAs: a compilation. Plant Mol Biol Rep 3: 43–89CrossRefGoogle Scholar
  12. Dawid IB, Blacker AW (1972) Maternal and cytoplasmic inheritance of mitochondrial DNA in Xenopus. Dev Biol 29: 152–161PubMedCrossRefGoogle Scholar
  13. DeBonte LR, Matthews BF, Wilson KG (1984) Variation of plastid and mitochondria DNAs in the genus Daucus. Am J Bot 71: 932–940CrossRefGoogle Scholar
  14. Deno H, Shinozaki K, Sugiura M (1983) Nucleotide sequence of tobacco chloroplast gene for the alpha subunit of proton-translocating ATPase. Nucleic Acids Res 7: 2185–2191CrossRefGoogle Scholar
  15. Ee JH van, Vos YJ, Planta RJ (1980) Physical map of chloroplast DNA of Spirodela oligorhiza: Analysis by the restriction endonucleases Pstl, Xhol and Sacl. Gene 12: 191–200PubMedCrossRefGoogle Scholar
  16. Gillham NW, Boynton JE, Harris EH, Herrmann RG (1985) Evolution of plastid DNA. In: Cavalier-Smith T (ed) DNA evolution: natural selection and genome size. John Wiley & Sons, New York, pp 299–351Google Scholar
  17. Goodspeed TH (1954) The genus Nicotiana. Chronica Botanica, Waltham, MAGoogle Scholar
  18. Gordon KHJ, Crouse EJ, Bohnert HJ, Herrmann RG (1981) Restriction endonuclease cleavage site map of chloroplast DNA from Oenothera parviflora (Euoenothera plastome IV). Theor Appl Genet 59: 281–296CrossRefGoogle Scholar
  19. Gordon KHJ, Crouse EJ, Bohnert HJ, Herrmann RG (1982) Physical mapping of differences in chloroplast DNA of the five wild-type plastomes in Oenothera subsection Euoenothera. Theor Appl Genet 61: 373–384Google Scholar
  20. Gray JC, Kung SD, Wildman SG, Sheen SJ (1974) Origin of Nicotiana tabacum L. detected by polypeptide composition of fraction I protein. Nature (Lond) 252: 226–227CrossRefGoogle Scholar
  21. Gruissem W, Zurawski G (1985) Analysis of promoter regions for the spinach chloroplast rbcL, atpB, and psbA genes. EMBO J 4: 3375–3383PubMedGoogle Scholar
  22. Herrmann RG, Whitfield PR (1982) Restriction mapping of chloroplast DNA using low-melting temperature agarose in Methods in Chloroplast Molecular Biology. Edelman M, Hallick RB, Chua NH (eds) Elsevier Biomedical Press, Amsterdam, pp 451–468Google Scholar
  23. Hirai A, Ishibashi T, Morikami A, Iwatsuki N, Shinozaki K, Sugiura M (1985) Rice chloroplast DNA: a physical map and the location of the genes for the large subunit of ribulose 1,5-bisphosphate carboxylase and the 32 photosystem II reaction center protein. Theor Appl Genet 70: 117–122Google Scholar
  24. Hosaka K, Ogihara Y, Matsubayashi M, Tsunewaki K (1984) Phylogenetic relationship between the tuberous Solanum species as revealed by restriction endonuclease and analysis of chloroplast DNA. Jpn J Genet 59: 349–369CrossRefGoogle Scholar
  25. Kirk JTO (1971) Will the real chloroplast DNA please stand up. In: Autonomy and biogenesis of mitochondria and chloroplasts. Boardman NK, Linnane AW, Smillie RM (eds), Elsevier North Holland, Amsterdam, pp 267–276Google Scholar
  26. Ko K, Strauss NA, Williams JP (1983) Mapping the chloroplast DNA of Vicia faba. Curr Genet 7: 255–263CrossRefGoogle Scholar
  27. Koller B, Delius H (1980) Vicia faba chloroplast DNA has only one set of ribosomal RNA genes as shown by partial denaturation mapping and R-loop analysis. Mol Gen Genet 178: 216–269Google Scholar
  28. Kolodner RD, Tewari KK (1979) Inverted repeats in chloroplast DNA from higher plants. Proc Natl Acad Sci USA 76: 41–45PubMedCrossRefGoogle Scholar
  29. Kong XF, Lovett PS, Kung SD (1984) Nicotiana chloroplast genome. IX. Identification of regions active as prokaryotic promoters in E. coli. Gene 31: 23–30Google Scholar
  30. Kung SD (1976) Tobacco fraction I protein: A unique genetic marker. Science 191: 429–434PubMedCrossRefGoogle Scholar
  31. Kung SD (1977) Expression of chloroplast genomes in higher plants. Annu Rev Plant Physiol 28: 401–437CrossRefGoogle Scholar
  32. Kung SD (1989) In Molecular evolution of Nicotiana chloroplast genome. Kung SD, Artzen C (eds) Plant Biotech, Butterworths, Stoneham, MA, pp 373–391Google Scholar
  33. Kung SD (1989) Why does maternal inheritance exist? (manuscript)Google Scholar
  34. Kung SD, Lin CM (1985) Chloroplast promoters from higher plants. Nucleic Acids Res 13: 7543–7549PubMedCrossRefGoogle Scholar
  35. Kung SD, Williams JP (1969) Chloroplast DNA from broad bean. Biochim Biophys Acta 195: 434–445PubMedGoogle Scholar
  36. Kung SD, Zhu YS, Shen GF, Sisson VA (1981) Nicotiana chloroplast genome. II. Chloroplasts DNA alteration. Mol Gen Genet 183: 20–24Google Scholar
  37. Kung SD, Zhu YS, Shen GF (1982) Nicotiana chloroplast genome III. Chloroplast DNA evolution. Theor Appl Genet 61: 73–79Google Scholar
  38. Kung SD, Akada S, Mongkolsuk S, Kong XF, Lin CM, Lovett PS (1986) The promoters and terminators of chloroplast genes. The chondriome: Chloroplast and mitochondrial genomes. In: Mantell SH, Chapman GP, Street PFS (eds) John Wiley & Sons, New York, pp 142–163Google Scholar
  39. Lin CM, Liu CC, Kung SD (1986) Nicotiana chloroplast Genome X. correlation between the DNA sequences of the gene and the isoelectric focusing pattern of the large subunits of RuBPCase. Mol Plant Biol 6: 81–87Google Scholar
  40. Link G (1984) DNA sequence requirements for the accurate transcription of a protein-coding plastid gene in a plastid in vitro system from mustard (Sinapis alba L.). EMBO J 3:1679— 1704Google Scholar
  41. Link G, Chambers SE, Thompson JA, Falk H (1981) Size and physical organization of chloroplast DNA from mustard (Sinapis alba L.). Mol Gen Genet 181: 454–457CrossRefGoogle Scholar
  42. Mattoo A, Foffman-Falk H, Marder JB, Edelman M (1984) Regulation of protein metabolism: Coupling of photosynthetic electron transport to in vivo degradation of the rapidly metabolized 32-kilodalton protein of the chloroplast membranes. Proc Natl Acad Sci USA 81: 1380–1384PubMedCrossRefGoogle Scholar
  43. McIntosh L, Poulsen C, Bogorad L (1980) Chloroplast gene sequence for the large subunit of ribulose bisphosphate carboxylase of maize. Nature (London) 288: 556–560CrossRefGoogle Scholar
  44. Melchers G, Sacristan MD, Holder AA (1978) Somatic hybrid plants of potato and tomato regenerated from fused protoplasts. Carlsberg Res Commun 43: 203–218CrossRefGoogle Scholar
  45. Metzlaff M, Borner T, Hagemann R (1981) Variations of chloroplast DNAs in the genus Pelargonium and their biparental inheritance. Theor Appl Genet 60: 37–41CrossRefGoogle Scholar
  46. Mubumbila M, Gordon KHJ, Crouse EJ, Burkard G, Weil JH (1983) Construction of the physical map of the chloroplast DNA of Phaseolus vulgaris and localization of ribosomal and transfer RNA genes. Gene 21: 257–266PubMedCrossRefGoogle Scholar
  47. Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature (Lond) 322: 572–574CrossRefGoogle Scholar
  48. Orozco EM Jr, Mullet JE, Chua NH (1985) An in vitro system for accurate transcription initiation of chloroplast protein genes. Nucleic Acids Res 13:1283 — 1302Google Scholar
  49. Palmer JD (1985) Comparative organization of chloroplast genomes. Annu Rev Genet 19: 325–354PubMedCrossRefGoogle Scholar
  50. Palmer JD (1987) Chloroplast DNA evolution and biosystematic uses of chloroplasts DNA variation. Am Nat 130: S6 - S29CrossRefGoogle Scholar
  51. Palmer JD, Thompson WF (1981) Rearrangements in the chloroplast genomes of mung bean and pea. Proc Natl Acad Sci USA 78: 5533–5537PubMedCrossRefGoogle Scholar
  52. Palmer JD, Zamir D (1982) Chloroplast DNA evolution and phylogenetic relationships in Lycopersicon. Proc Natl Acad Sci USA 79: 5006–5010PubMedCrossRefGoogle Scholar
  53. Palmer JD, Shields CR, Cohen DB, Orton TJ (1983) Chloroplast DNA evolution and the origin of amphidiploid Brassica species. Theor Appl Genet 65: 181–189CrossRefGoogle Scholar
  54. Palmer JD, Singh GP, Pillai DTN (1983) Structure and sequence evolution of three legume chloroplast DNAs. Mol Gen Genet 190: 13–19CrossRefGoogle Scholar
  55. Palmer JD, Nugent JM, Herbon LA (1987) Unusual structure of geranium chloroplast DNA: A triple-sized inverted repeat extensive gene duplications, multiple inversions, and two repeat families. Proc Natl Acad Sci USA 84: 769–773Google Scholar
  56. Perl-Treves R, Galun E (1985) The Cucumis plastome: physical map, intragenic variation and phylogenetic relationships. Theor Appl Genet 71: 417–429Google Scholar
  57. Platt T (1987) Transcription termination and the regulation of gene expression. Annu Rev Biochem 55:339 — 372Google Scholar
  58. Poulsen C (1983) The barley chloroplast genome: Physical structure and transcriptional activity in vivo. Carlsberg Res Commun 48: 57–80CrossRefGoogle Scholar
  59. Rhodes PR, Kung SD (1981) Chloroplast DNA isolation: purity achieved without nuclease digestion. Can J Biochem 59: 911–915PubMedGoogle Scholar
  60. Rosenburg M, Court D (1979) Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet 13: 319–353CrossRefGoogle Scholar
  61. Royer HD, Sager R (1979) Methylation of chloroplast DNAs in the life cycle of Chlamydomonas. Proc Natl Acad Sci USA 76: 5794–5798PubMedCrossRefGoogle Scholar
  62. Salts Y, Herrmann RG, Peleg N, Lavi U, Izhar S, Frankel R, Beckmann JS (1984) Physical mapping of plastid DNA variation among eleven Nicotiana species. Theor Appl Genet 69: 1–14CrossRefGoogle Scholar
  63. Schiller B, Herrmann RG, Melchers G (1982) Restriction endonuclease analysis of plastid DNA from tomato, potato, and some of their somatic hybrids. Mol Gen Genet 186: 453–459CrossRefGoogle Scholar
  64. Shen GF, Chen K, Wu M, Kung SD (1982) Nicotiana chloroplast genome. IV. N. acuminata has larger inverted repeats and genome size. Mol Gen Genet 187: 12–18Google Scholar
  65. Shinozaki K, Sugiura M (1982) The nucleotide sequence of the tobacco chloroplast gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Gene 20: 92–102CrossRefGoogle Scholar
  66. Shinozaki K, Sun C, Sugiura M (1984) Gene organization of chloroplast DNA from the broad bean (Vicia faba). Mol Gen Genet 197: 363–367CrossRefGoogle Scholar
  67. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Onto C, Torazawa K, Meng BY, Sugita M, Deno H, Damogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5: 2043–2049PubMedGoogle Scholar
  68. Shoemaker RC, Hatfield PM, Palmer RG, Atherly AG (1986) Chloroplast DNA variation in the genus Glycine subgenus soja. J Hered 77: 26–30Google Scholar
  69. Stern DB, Gruissem W (1988) Control of Plastid gene expression: 3’ inverted repeats act as mRNA processing and stabilizing elements, but do not terminate transcription. Cell 51: 1145–1157CrossRefGoogle Scholar
  70. Sytsma KJ, Gottlieb LD (1986) Chloroplast DNA evidence for the origin of the genus Heterogaura from a species of Clarkia ( Onagraceae ). Proc Natl Acad Sci USA 83: 5554–5557Google Scholar
  71. Tassopulu D, Kung SD (1984) Nicotiana chloroplast genome. 6. Deletion and hot spot — a proposed origin of the inverted repeat. Theor Appl Genet 67: 185–193Google Scholar
  72. Thompson JA, Hansmann P, Knoth R, Link G, Falk H (1981) Electron microscopical localization of the 23S and 16S rRNA genes within an inverted repeat for two chromoplast DNAs. Curr Genet 4:25–28Google Scholar
  73. Tsunewaki K, Ogihara Y (1983) The molecular basis of genetic diversity among cytoplasms of Triticum and Aegilops species II. On the origin of polyploid wheat cytoplasms as suggested by chloroplast DNA restriction fragment patterns. Genetics 104: 155–171Google Scholar
  74. Vaugh KC, DeBonte LR, Wilson KG, Schaeffer GW (1980) Organelle alteration as a mechanism for maternal inheritance. Science 208: 196–197CrossRefGoogle Scholar
  75. Vedel F, Lebacq P (1980) Cytoplasmic DNA variation and relationships in cereal genomes. Theor Appl Genet 58: 219–224CrossRefGoogle Scholar
  76. Vedel F, Quetier F, Cauderon F, Dosba F, Doussinault G (1981) Studies on maternal inheritance in polyploid wheats with cytoplasmic DNAs as genetic markers. Theor Appl Genet 59: 239–245Google Scholar
  77. Whitfield PR, Bottomley W (1983) Organization and structure of chloroplast genes. Annu Rev Plant Physiol 34: 279–310CrossRefGoogle Scholar
  78. Xu YQ, Akada S, Machii H, Kung SD (1989) (in preparation)Google Scholar
  79. Zhao Y, Weng XH, Zou Q, Shen QF, Tang S, Chai JH, Wang XM, Kung SD (1989) Construction of cosmid library and detailed physical map of rice chloroplast DNA. (manuscript)Google Scholar
  80. Zurawski G, Clegg MT (1987) Evolution of higher-plant chloroplast DNA-encoded genes: implications for structure-function and phylogenetic studies. Annu Rev Plant Physiol 38: 391–418CrossRefGoogle Scholar
  81. Zurawski F, Perrot B, Bottomley W, Whitfield PR (1981) The structure of the gene for the large subunit of ribulose 1,5-bisphosphate carboxylase from spinach chloroplast DNA. Nucleic Acids Res 9:3251–3269Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • S. D. Kung
    • 1
  1. 1.Center for Agricultural Biotechnology, Maryland Institute of Biotechnology, and Department of BotanyThe University of MarylandCollege ParkUSA

Personalised recommendations