Skip to main content

Versatile Apparatuses for Electrogene Mapping, Electrophoresis and Electrofusion

  • Chapter
Plant Protoplasts and Genetic Engineering II

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 9))

Abstract

Electrophoresis is one of the most powerful and fundamental techniques for separation and analysis of proteins and nucleic acids which has been widely accepted for both preparative and analytical purposes (Andrews 1981; Hames and Rickwood 1981; Rickwood and Hames 1982; Maugh II 1983), especially in the fields of recombinant DNA and nucleic acid sequencing. There are only a few investigations that do not utilize electrophoretic techniques (Rickwood and Hames 1982; Weissbach and Weissbach 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anand R (1986) Pulsed field gel electrophoresis: a technique for fractionating large DNA molecules. Trends Genet 2: 278–283

    Article  CAS  Google Scholar 

  • Andrews AT (1981) Electrophoresis: theory, techniques, and biochemical and clinical applications. Clarendon, New York Oxford

    Google Scholar 

  • Barlow DP, Lehrach H (1987) Genetics by gel electrophoresis: the impact of pulsed field gel electrophoresis on mammalian genetics. Trends Genet 3: 167–171

    Article  CAS  Google Scholar 

  • Bates GW (1985) Electrical fusion for optimal formation of protoplast heterokaryons in Nicotiana. Planta 165: 217–224

    Article  Google Scholar 

  • Bates GW, Hasenkampf CA (1985) Culture of plant somatic hybrids following electric fusion. Theor Appl Genet 70: 227–233

    Article  Google Scholar 

  • Burke DT, Carle GF, Olson CM (1987) Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236: 806–812

    Article  PubMed  CAS  Google Scholar 

  • Carle GF, Olson MV (1985a) Separation of chromosomal DNA molecules from yeast by orthogonalfield-alternation gel electrophoresis. Nucleic Acids Res 12: 5647–5664

    Article  Google Scholar 

  • Carle GF, Olson MV (1985b) An electrophoretic karyotype for yeast. Proc Natl Acad Sci USA 82:3756–3760

    Article  PubMed  CAS  Google Scholar 

  • Carle GF, Frank M, Olson MV (1986) Electrophoretic separations of large DNA molecules by periodic inversion of the electric field. Science 232: 65–68

    Article  PubMed  CAS  Google Scholar 

  • Chu G, Vollrath D, Davis RW (1986) Separation of large DNA molecules by contour-clamped homogeneous electric fields. Science 234: 1582–1585

    Article  PubMed  CAS  Google Scholar 

  • Cook PR (1984) A general method for preparing intact nuclear DNA. EMBO J 3: 1837–1842

    PubMed  CAS  Google Scholar 

  • Gardiner K, Laas W, Patterson D (1986) Fractionation of large mammalian DNA restriction frag-ments using vertical pulsed-field gradient gel electrophoresis. Somatic Cell Mol Genet 12: 185–190

    Article  CAS  Google Scholar 

  • Hames BD, Rickwood D (eds) (1981) Gel electrophoresis of proteins. IRL, Oxford

    Google Scholar 

  • Heiter P, Pridmore D, Hegemann JH, Thomas M, Davis RW, Philippsen P (1985) Functional selection and analysis of yeast centromeric DNA. Cell 42: 913–921

    Article  Google Scholar 

  • Holde KE van (1971) Physical biochemistry. Prentics-Hall, Inglewood Cliffs

    Google Scholar 

  • Johnson JJ, Borst P (1986) Mapping of VSG genes on large expression-site chromosomes of Trypanosoma brucei separated by pulsed-field gradient electrophoresis. Gene 43: 213–220

    Article  PubMed  CAS  Google Scholar 

  • Kao KN, Michayluk MR (1974) A method for high frequency intergenetic fusion of plant protoplast. Planta 115: 355–367

    Article  CAS  Google Scholar 

  • Keller WA, Melchers G (1973) The effect of high pH and calcium on tobacco leaf protoplast fusion. Z Naturforsch 28C:737–741

    CAS  Google Scholar 

  • King RC (ed) (1974) Handbook of genetics, vol 2. Plants, plant viruses, and protists. Plenum, New York London

    Google Scholar 

  • Lawrance SK, Smith CL, Srivastava R, Cantor CR, Weissman SM (1987) Megabase-scale mapping of the HLA gene complex by pulsed field gel electrophoresis. Science 235: 1387–1390

    Article  PubMed  CAS  Google Scholar 

  • Maugh II TH (1983) A survey of separative techniques. Science 222: 259–266

    Article  PubMed  CAS  Google Scholar 

  • Meyerowitz EM, Pruitt RE (1985) Arabidopsis thaliana and plant molecular genetics. Science 229: 1214–1218

    Google Scholar 

  • Morikawa H, Sugino M, Yasuyuki H, Takeda J, Senda M, Hirai A, Yamada Y (1986) Interspecific plant hybridization by electrofusion in Nicotiana. Biotechnology 4: 57–60

    Article  Google Scholar 

  • Nagata N (1984) Fusion of somatic cells. In: Linskens HF, Heslop-Harrison J (eds) Cellular interactions. Springer, Berlin Heidelberg New York, pp 491–507

    Chapter  Google Scholar 

  • Neumann E, Gerisch G, Opatz K (1980) Cell fusion induced by high electric impulses applied Dictyostelium. Naturwissenschaften 67: 414–415

    Article  Google Scholar 

  • Neumann E, Rosenheck K (1972) Permeability changes induced by electric impulses in vesicular membranes. J Membr Biol 10: 279–290

    Article  PubMed  CAS  Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature (Lond) 322: 572–574

    Article  CAS  Google Scholar 

  • Ono K, Okamoto K (1984) Isolation and culture of protoplasts from the liverwort cell suspension cultures and the moss protonemata. J Hattori Bot Lab 56: 201–207

    Google Scholar 

  • Pohl HA (1978) Dielectrophoresis. Cambridge University Press, Cambridge

    Google Scholar 

  • Rickwood D, Hames BD (eds) (1982) Gel electrophoresis of nucleic acid. IRL, Oxford

    Google Scholar 

  • Schwartz DC, Cantor CR (1984) Separation of yeast chromosome-size DNA’s by pulsed field gradient gel electrophoresis. Cell 37: 67–75.

    Article  PubMed  CAS  Google Scholar 

  • Senda M, Takeda J, Abe S, Nakamura T (1979) Induction of cell fusion of plant protoplasts by electrical stimulation. Plant Cell Physiol 20: 1441–1443

    CAS  Google Scholar 

  • Shen D, Wang Z, Wu M (1987) Gene mapping on maize pachytene chromosomes by in situ hybridization. Chromosoma 95: 311–314

    Article  Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5: 2043–2049

    PubMed  CAS  Google Scholar 

  • Smith CL, Cantor CR (1986) Analysis of genome organization and rearrangements by pulsed field gradient gel electrophoresis. In: Setlow J, Hollaender A (eds) Genetic engineering, vol. 8. Plenum Press, New York London, pp 45–70

    Google Scholar 

  • Smith CL, Econome JG, Schutt A, Kloc S, Cantor CR (1987) A physical map of Escherichia coli K12 genome. Science 236: 1448–1453

    Article  PubMed  CAS  Google Scholar 

  • Tempelaar MJ, Jones MGK (1985 a) Fusion characteristics of plant protoplasts in electric fields. Planta 165: 205–216

    Google Scholar 

  • Tempelaar MJ, Jones MGK (1985 b) Direct electrofusion between protoplasts with different responses in a mass fusion system. Plant Cell Rep 4: 92–95

    Google Scholar 

  • Watts JW, King JM (1984) A simple method for large scale electrofusion and culture of plant protoplast. Biosci Rep 4: 335–342

    Article  PubMed  CAS  Google Scholar 

  • Watts JW, Doonan JH, Cove DJ, King M (1985) Production of somatic hybrids of moss by electrofusion. Mol Gen Genet 199: 349–351

    Article  Google Scholar 

  • Weissbach A, Weissbach H (eds) (1986) Methods in enzymology, vol 118. Plant molecular biology. Academic Press, New York London

    Google Scholar 

  • Yoshida K (1983a) A versatile apparatus for electrophoresis including isoelectrofocusing and its performances. Ann Biochem 129: 37–45

    Article  CAS  Google Scholar 

  • Yoshida K (1983b) A highly simplified horizontal electrophoretic apparatus including a handmade power supply and its application. Ann Biochem 130: 246–256

    Article  CAS  Google Scholar 

  • Yoshida K (1983c) Appendix: Deviation of I-F relationship from Ohm’s law and theory of electrolyte conductance and its computer simulation. Ann Biochem 130: 256–259

    Article  Google Scholar 

  • Yoshida K (1985) Mitochondria transplantation and transformation in yeasts: Stepwise transformation as a general transformation method and electrogene mapping. IF Rep 13: 143–150 (in Japanese)

    Google Scholar 

  • Yoshida K (1986) Yeast genetic analysis programs (YGAP) for a microcomputer. Yeast 2: S438

    Google Scholar 

  • Yoshida K, Kondo T (1987) Construction of a versatile micro-computer-controlled pulsed field elec- trophoretic apparatus and its application to DNA separation. Seikagaku 59: 738 (in Japanese)

    Google Scholar 

  • Yoshida K, Hisatomi T, Yanagishima N (1987) Sexual behavior and its pheromonal regulation in ascosporogenous yeasts (Plenary lecture). XIIth International Spec Symp Genetics of non-conventional yeasts, Weimar. Abstr PLI, p 1

    Google Scholar 

  • Yoshida K, Hisatomi T, Yanagishima (1989) J Basic Microbiol 2: 99–128

    Article  Google Scholar 

  • Zimmermann U (1982) Electric field-mediated fusion and related electrical phenomena. Biochem Biophys Acta 694: 227–277

    PubMed  CAS  Google Scholar 

  • Zimmermann U, Scheurich P (1981) High frequency fusion of plant protoplast by electric fields. Planta 151: 26–32

    Article  Google Scholar 

  • Zimmermann U, Pilwat G, Riemann F (1974) Dielectric breakdown of cell membranes. Biophys J 14: 881–899

    Article  PubMed  CAS  Google Scholar 

References for Note Added in Proof

  • Cantor CR, Gaal A, Smith CL (1988) High-resolution separation and accurate size determination in pulsed-field gel electrophoresis of DNA. 3. Effect of electrical field shape. Biochemistry 27: 9216–9221

    Article  PubMed  CAS  Google Scholar 

  • Davies KE (ed) (1988) Genome analysis — a practical approach. IRL, Oxford

    Google Scholar 

  • Deutsch JM, Madden TL (1989) Theoretical studies during gel electrophoresis. J Chem Phys 90: 2476–2485

    Article  CAS  Google Scholar 

  • Ganal MW, Young ND, Tanksley SD (1989) Pulsed field gel electrophoresis and physical mapping of large DNA fragments in the Tm-2a region of chromosome 9 in tomato. Mol gen genet 215: 359–400

    Article  Google Scholar 

  • Lande M, Noolandi J, Turmel C, Brousseau R, Rousseau J, Slater GW (1988) Scrambling of bands in gel electrophoresis of DNA. Nucleic Acids Res 16: 5427–5437

    Article  Google Scholar 

  • Mathew KM, Smith CL, Cantor CR (1988a) High-resolution separation and accurate size determination in pulsed-field gel electrophoresis of DNA. 1. DNA size standards and the effect of agarose and temperature. Biochemistry 27: 9204–9210

    Article  PubMed  CAS  Google Scholar 

  • Mathew KM, Smith CL, Cantor CR ( 1988 b) High-resolution separation and accurate size determination in pulsed-field gel electrophoresis of DNA. 2. Effect of pulse time and electric field strength and implications for models of the separation process. Biochemistry 27: 9210–9216

    Article  PubMed  CAS  Google Scholar 

  • Mathew KM, Hui CF, Smith CL, Cantor CR (1988c) High-resolution separation and accurate size determination in pulsed-field gel electrophoresis of DNA. 4. Influence of DNA topology. Biochemistry 27: 9222–9226

    Article  PubMed  CAS  Google Scholar 

  • Schwartz DC, Koval M (1989) Conformational dynamics of individual DNA molecules during gel electrophoresis. Nature (London) 338: 520–522

    Article  CAS  Google Scholar 

  • Slater GW, Rousseau J, Noolandi J (1988) On the stretching of DNA in the reptation theories of gel electrophoresis. Biopolymers 26: 863–872

    Article  Google Scholar 

  • Smith SB, Aldridge PK, Callis JB (1989) Observation of individual DNA molecules undergoing gel electrophoresis. Science 243: 203–206

    Article  PubMed  CAS  Google Scholar 

  • Southern EM, Anand R, Fletcher DS (1987) A model for the separation of large DNA molecules crossed field gel electrophoresis. Nucleic Acids Res 15: 5925–5943

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K, Kondo T (1988) Construction of a versatile apparatus for pulsed field gel electrophoresis. Protein Nucleic Acid Enzyme 34: 2514–2526 (in Japanese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yoshida, K., Kondo, T. (1989). Versatile Apparatuses for Electrogene Mapping, Electrophoresis and Electrofusion. In: Bajaj, Y.P.S. (eds) Plant Protoplasts and Genetic Engineering II. Biotechnology in Agriculture and Forestry, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74454-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74454-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74456-3

  • Online ISBN: 978-3-642-74454-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics