Skip to main content

Pea (Pisum sativum L.)

  • Chapter
Legumes and Oilseed Crops I

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 10))

Abstract

The genus Pisum is a member of the order Fabales, family Fabaceae, tribe Viciae. It consists of a broad range of morphologically distinct types spread worldwide, many of which are described as separate species. Pisum is indigenous to Central Asia, Eurasia, and, as a secondary place of origin, the eastern Mediterranean (Hawkes 1983). Recent cytological and genetic research has proved that all species have a chromosome number of 2n = 14, and no natural polyploid forms have been discovered (Jaranowski and Micke 1985). All wild types are divided into the following five species: Pisum formosum Stev., P. fulvum Sibth. et Sm., P. abyssinicum Braun., P. humile Boiss. et Noe, and P. elatius Stev. Pisum sativum L. is divided into two subspecies: ssp. hortense A. et Gr. — the garden pea, and ssp. arvense (L.) A. et Gr. — the field pea (syn. P. arvense L.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed R, Gupta SD, Ghosh PD (1987) The cytological status of plants regenerated from shoot- meristem culture of Pisum sativum. Plant Breed 98: 306–311

    Article  Google Scholar 

  • Anonymous (1985) Mutation breeding for disease resistance using in vitro culture techniques. IAEA-TECDOC 342, Int Atomic Energy Agency, Vienna

    Google Scholar 

  • Arnold SV, Eriksson T (1976) Factors influencing the growth and division of pea mesophyll protoplasts. Physiol Plant 36: 193–196

    Article  Google Scholar 

  • Arnold SV, Eriksson T (1977) A revised medium for growth of pea mesophyll protoplasts. Physiol Plant 39: 257–260

    Article  Google Scholar 

  • Atanassov AI, Mehandjiev AD (1979) In vitro induced morphogenesis in pea embryos. CR Acad Bulg Sci 32: 115–118

    Google Scholar 

  • Bajaj S, Mickelson O, Lillivek A, Baker LR, Bergen WG, Gill JL (1971a) Prediction of protein efficiency ratio of peas from their albumin contents. Crop Sci 11: 813–815

    Article  CAS  Google Scholar 

  • Bajaj S, Mickelson O, Baker LR, Markarian D (1971 b) The quality of protein in various lines of peas. Br J Nutr 25: 207–212

    Google Scholar 

  • Bajaj YPS (1983) Survival of somatic hybrid protoplasts of wheat x pea and rice x pea subjected to −196°C. Indian J Exp Biol 21: 120–122

    Google Scholar 

  • Bajaj YPS (1986) Biotechnology in agriculture and forestry. 2. Crops I. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Bajaj YPS, Dhanju MS (1979) Regeneration of plants from apical meristem tips of some legumes. Curr Sci 48: 906–907

    Google Scholar 

  • Baldev B, Lang A, Agatep AO (1965) Gibberellin production in pea seeds developing in excised pods: Effect of growth retardant AMO-1618. Science 147: 155–156

    Article  PubMed  CAS  Google Scholar 

  • Blixt S (1972) Mutation genetics in Pisum. Agr Hort Genet 30: 1–293

    Google Scholar 

  • Blixt S (1975) The pea. In: King CR (ed) Handbook of genetics, vol 2. Plenum Press, New York, pp 181–221

    Google Scholar 

  • Bonner J (1938) Nicotinic acid and the growth of isolated pea embryos. Plant Physiol 13: 865–868

    Article  PubMed  CAS  Google Scholar 

  • Bulygina NG, Erkejev MI (1979) Rate of callus formation in varieties of pea with different genotypes. 3-ja Vses Konf Kult Kletok Rast, Abovyan, pp 182–183 (in Russian)

    Google Scholar 

  • Christianson ML, Warnick DA, Carlson PS (1983) A morphogenetically competent soybean suspension culture. Science 222: 632–634

    Article  PubMed  CAS  Google Scholar 

  • Constabel F, Kirkpatrick JW, Gamborg OL (1973) Callus formation from mesophyll protoplasts of Pisum sativum. Can J Bot 51: 2105–2106

    Article  Google Scholar 

  • Constabel F, Dudits D, Gamborg OL, Kao KN (1975) Nuclear fusion in intergeneric heterokaryons: A note. Can J Bot 53: 2092–2095

    Google Scholar 

  • Constabel F, Weber G, Kirkpatrick JW, Pahl K (1976) Cell division of intergeneric protoplast fusion products. Z Pflanzenphysiol 79: 1–7

    Google Scholar 

  • Crowder A J, Landgren CR, Rockwood LL (1979) Cultivar differences in starch content and protoplasts yields from root cortical explants of Pisum sativum. Physiol Plant 46: 85–88

    Article  Google Scholar 

  • Czosnowski E, Domka L (1981) In vitro callus formation from organs of some Papilionaceae plants. Bull Soc Am Sci Lett Poznan, Ser D 21: 39–46

    Google Scholar 

  • Davey MR, Cocking EC (1972) Uptake of bacteria by isolated higher plant protoplasts. Nature (Lond) 239: 455–456

    Article  Google Scholar 

  • Davies DR, Bedford ID (1982) Abscisic acid and storage protein accumulation in Pisum sativum embryos grown in vitro. Plant Sci Lett 27: 337–343

    Article  CAS  Google Scholar 

  • Davis BD (1983 a) Growth of excised pea embryonic axes on different sugars. Am J Bot 70:816–820

    Google Scholar 

  • Davis BD (1983 b) Effects of sugars on alpha-amylase activity in pea embryonic axes. Am J Bot 70:821–826

    Google Scholar 

  • de Capite L (1955) La coltura dei frutti in vitro da fiori recisi di Fragaria chiloensis Ehrh.×.F Virginia Duch. var. Marshali e di Pisum sativum L. var. Zekka. Ric Sci Ital 25: 532–538

    Google Scholar 

  • Domoney C, Davies DR, Casey R (1980) The initiation of legumin synthesis in immature embryos of Pisum sativum L. grown in vivo and in vitro. Planta 149: 454–460

    Article  CAS  Google Scholar 

  • Ezhova TA, Bagrova AM, Gostimskij SA (1985) Shoot formation in callus tissues derived from stem apices, epicotyls, stem internodes, and leaves of various pea genotypes. Fiziol Rast 32: 513–520 (in Russian)

    Google Scholar 

  • FAO (1988) Production Yearbook 1987, vol. 41. FAO, Rome, pp 151, 196

    Google Scholar 

  • Feldman JL, Torey JG (1977) Nuclear changes associated with cellular dedifferentiation in pea root cortical cells cultured in vitro. J Cell Sci 28: 87–105

    PubMed  CAS  Google Scholar 

  • Fowke LC, Constabel F, Gamborg OL (1977) Fine structure of fusion products from soybean cell culture and pea protoplasts. Planta 135: 257–266

    Article  Google Scholar 

  • Frolova LV, Shamina ZB (1974) Cytogenetic characterization of tissue culture in plants from the Fabaceae family. Citol Genet (Kiev) 8: 413–418 (in Russian)

    CAS  Google Scholar 

  • Frydman VM, MacMillan J (1976) Gibberellins in developing seed of Pisum sativum cv. Progress No 9. Acta Univ N Copernici Biol 18: 133–136

    Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements for suspension cultures of soybean root cells. Exp Cell Res 50: 151–158

    Article  PubMed  CAS  Google Scholar 

  • Gamborg OL, Constabel F, Shyluk JP (1974) Organogenesis in callus from shoot apices of Pisum sativum. Physiol Plant 30: 125–128

    Article  CAS  Google Scholar 

  • Gamborg OL, Shyluk J, Kartha KK (1975) Factors affecting the isolation and callus formation in protoplasts from the shoot apices of Pisum sativum L. Plant Sci Lett 4: 285–292

    Article  CAS  Google Scholar 

  • Gamborg OL, Davies BP, Stahlhut RW (1983) Somatic embryogenesis in cell cultures of Glycine species. Plant Cell Rep 2: 209–212

    Article  Google Scholar 

  • Gantotti BV, Kartha KK (1986) Pea. In: Evans DA, Sharp WA, Ammirato PV (eds) Handbook of plant cell culture, vol 4. Techniques and applications. Macmillan, New York, pp 370–418

    Google Scholar 

  • Garcia-Martinez JL, Carbonell J (1985) Induction of fruit set and development in pea ovary explants by gibberellic acid. J Plant Growth Reg 4: 19–28

    Article  Google Scholar 

  • Ghosh P, Sharma AK (1979) Chromosome analysis in suspension culture of Vigna sinensis var. black and Pisum sativum L. Caryologia 32: 419–424

    Google Scholar 

  • Gosal SS, Bajaj YPS (1979) Establishment of callus tissue cultures and the induction of organogenesis in some grain legumes. Crop Improv 6: 154–160

    Google Scholar 

  • Gosal SS, Bajaj YPS (1984) Isolation of sodium chloride resistant cell lines in some grain legumes. Indian J Exp Biol 22: 209–214

    Google Scholar 

  • Gosal SS, Bajaj YPS (1988) Pollen embryogenesis and chromosomal variation in anther culture of three food legumes - Cicer arietinum, Pisum sativum and Vigna mungo. Sabrao J 20

    Google Scholar 

  • Gostimskij SA, Bagrova AM, Ezhova TA (1985) Discovery and cytogenetic analysis of variation originated during plant regeneration in pea tissue culture. Dokl Akad Nauk (USSR) 283: 1003–1011 (in Russian)

    Google Scholar 

  • Gould KS, Cutter EG, Young JPW, Charlton WA (1987) Positional differences in size, morphology, and in vitro performance of pea axillary buds. Can J Bot 65: 406–411

    Article  Google Scholar 

  • Govorov LI (1928) The peas of Afghanistan. Trudy Prikl Bot Genet Sci 19: 517–522

    Google Scholar 

  • Griga M, Tejklovä E, Noväk FJ (1984a) Hormonal regulation of growth of pea ( Pisum sativum L.) shoot apices in in vitro culture. Rostl Vyr 30: 523–530 (in Czech)

    Google Scholar 

  • Griga M, Tejklovä E, Novak FJ (1984b) In vitro propagation of pea by axillary and adventitious bud technique. In: Novak FJ, Havel L, Dolezel S (eds) Proc Int Symp Plant tissue cell cult - appl crop improv, Czech Acad Sci, Prague, pp 507–508

    Google Scholar 

  • Griga M, Tejklovä E, Noväk FJ, Kubaläkovä M (1986) In vitro clonal propagation of Pisum sativum L. Plant Cell Tissue Organ Cult 6: 95–104

    Article  CAS  Google Scholar 

  • Gupta S (1975) Morphogenetic response of haploid callus tissue of Pisum sativum (var. B22). Indian Agric 19: 11–21

    CAS  Google Scholar 

  • Gupta S, Ghosal KK, Gadgil VN (1972) Haploid tissue culture of Triticum aestivum var. Sonalika and Pisum sativum var. B22. Indian Agric 16: 277–278

    Google Scholar 

  • Guy M, Kende H (1984) Ethylene formation in Pisum sativum and Vicia faba protoplasts. Planta 160: 276–280

    Article  CAS  Google Scholar 

  • Guy M, Reinhold L, Laties GG (1978) Membrane transport of sugars and amino acids in isolated protoplasts. Plant Physiol 61: 593–596

    Article  PubMed  CAS  Google Scholar 

  • Hagedorn DJ (ed) (1984) Compendium of pea diseases. Am Phytopathol Soc, St Paul, Minn

    Google Scholar 

  • Hagedorn DJ (1985) Diseases of peas: Their importance and opportunities for breeding for disease resistance. In: Hebblethwaite PD, Heath MC, Dawkins TCK (eds) The Pea Crop. A Basis for Improvement. Butterworths, London, pp 205–213

    Google Scholar 

  • Hahn H, De Zacks R, Kende H (1974) Cytokinin formation in pea seeds. Naturwissenschaften 61: 170

    Article  PubMed  CAS  Google Scholar 

  • Harland SC (1948) Inheritance of immunity to mildew in Peruvian forms of Pisum sativum. Heredity 2: 263–269

    Article  PubMed  CAS  Google Scholar 

  • Haskins RH, Kartha KK (1980) Freeze preservation of pea (Pisum sativum cv. Century) meristems: Cell survival. Can J Bot 58: 833–840

    Google Scholar 

  • Haupt W (1952) Untersuchungen über den Determinationsvorgang der Blütenbildung bei Pisum sativum. Z Bot 40: 1–32

    CAS  Google Scholar 

  • Hawkes JG (1983) The diversity of crop plants. Harvard Univ Press, Cambridge, Massachusetts

    Google Scholar 

  • Hildebrandt AC, Wilmar JC, Johns H, Riker A J (1963) Growth of edible chlorophyllous plant tissue in vitro. Am J Bot 50: 248–254

    Google Scholar 

  • Hussey G, Gunn HV (1984) Plant production in pea (Pisum sativum L. cvs. Puget and Upton) from long-term callus with superficial meristems. Plant Sci Lett 37: 143–148

    Google Scholar 

  • Jacobsen HJ, Kysely W (1984) Induction of somatic embryos in pea, Pisum sativum L. Plant Cell Tissue Organ Cult 3: 319–324

    Google Scholar 

  • Jacobsen HJ, Ingensiep HW, Herlt M, Kaul MLH (1980) Tissue culture studies in Pisum sativum. In: Sala F, Parisi B, Cella R, Ciferri O (eds) Plant cell cultures: results and perspectives. Developments in plant biology, vol 5. Elsevier, Amsterdam, pp 319–324

    Google Scholar 

  • Jaranowski J, Micke A (1985) Mutation breeding in peas. Mut Breed Rev 2: 1–23

    Google Scholar 

  • Jia SR (1982) Factors affecting the division frequency of pea mesophyll protoplasts. Can J Bot 60: 2192–2196

    Article  CAS  Google Scholar 

  • Jia SR, Kao KN, Knott DR (1982) Factors affecting the division frequency of pea mesophyll protoplasts. Sci Agr Sin 4: 20–25

    Google Scholar 

  • Kajita S, Matsui C, Syono K, Suzuki M, Nagata T (1980) Fine structure of fusion bodies formed between pea root nodule and tobacco mesophyll protoplasts. Z Pflanzenphysiol 97: 233–240

    Google Scholar 

  • Kallak HI (1983) On karyotypic differentiation of callus cells in long-term culture. Acta Comment Univ Tart 583: 25–36 (in Russian)

    CAS  Google Scholar 

  • Kallak HI, Vapper MA (1979) Tendencies to karyotypic variability in prolonged tissue culture. 3-ja Vses Konf Kult Kletok Rast Abovyan, pp 188–189 (in Russian)

    Google Scholar 

  • Kallak H, Yarvekylg L (1968) On morphological and cytological differences of pea callus. Citol Genet (Kiev) 2: 408–414 (in Russian)

    Google Scholar 

  • Kallak H, Yarvekylg L (1970) On cytological characterization of pea callus culture. In: Butenko RG (ed) The culture of isolated plant organs, tissues and cells. Nauka, Moscow, pp 140–144 (in Russian)

    Google Scholar 

  • Kallak H, Yarvekylg L (1971) On the cytogenetic effects of 2,4-D on pea callus in culture. Acta Biol Acad Sci Hung 22: 67–73

    PubMed  CAS  Google Scholar 

  • Kallak H, Yarvekylg L (1972) Cytological characterization of some callus lines of pea. In: Genetics of grain legumes. All-Union Res Breed Inst of Legumes, Orel, pp 7–16 (in Russian)

    Google Scholar 

  • Kallak H, Yarvekylg L (1976) On nuclear form and division in plant tissue culture. Acta Comment Univ Tart 383: 52–63 (in Russian)

    Google Scholar 

  • Kallak K, Yarvekylg L (1977 a) Changes in chromosome complement in long-term pea callus cultures. Acta Biol Acad Sci Hung 28: 183–189

    Google Scholar 

  • Kallak H, Yarvekylg L (1977 b) Nuclear behaviour in callus cells: morphology and division. Biol Plant 19: 48–52

    Google Scholar 

  • Kartha KK (1979) Freeze preservation of plant meristems as a means of germplasm preservation. Agrologist 8: 29

    Google Scholar 

  • Kartha KK (1981) Meristem culture and cryopreservation-methods and applications. In: Thorpe TA (ed) Plant Tissue Culture Methods and Application in Agriculture. Academic Press, New York, pp 181–211

    Google Scholar 

  • Kartha KK (1984) Culture of shoot meristems: pea. In: Vasil IK (ed) Cell Culture and Somatic Cell Genetics of Plants, vol 1. Academic Press, Orlando, pp 106–110

    Google Scholar 

  • Kartha KK, Gamborg OL (1978) Meristem culture techniques in the production of disease-free plants and freeze-preservation of germplasm of tropical tuber crops and grain legumes. In: Maraite H, Meyer JA (eds) Diseases of Tropical Food Crops. Univ Catholique de Louvain, Belgium, pp 267–283

    Google Scholar 

  • Kartha KK, Leung NL (1979) Cryopreservation of plant meristems as a means of germplasm storage. Cryobiology 16: 582–583

    Article  Google Scholar 

  • Kartha KK, Gamborg OL, Constabel F (1974) Regeneration of pea ( Pisum sativum L.) plants from shoot apical meristems. Z Pflanzenphysiol 72: 172–176

    Google Scholar 

  • Kartha KK, Leung NL, Gamborg OL (1979) Freeze-preservation of pea meristems in liquid nitrogen and subsequent plant regeneration. Plant Sci Lett 15: 7–15

    Article  Google Scholar 

  • Knösche von R (1981) Untersuchungen zur Polyploidisierung einer Gewebekultur von Pisum sativum L. II. Die Beziehung zwischen MitoScindex und der Häufigkeit der Restitutionsmitosen. Biol Zbl 100: 55–65

    Google Scholar 

  • Knösche von R, Günther G (1979) Restitution cell cycles important processes in the tissue culture of Pisum sativum L. leading to polyploidy. 3-ja Vses Konf Kult Kletok Rast Abovyan, p 188 (in Russian)

    Google Scholar 

  • Knösche von R, Günther G (1980) Untersuchungen zur spontanen Polyploidisierung einer Gewebekultur von Pisum sativum L. I. Der Nachweis von Restitutionszyklen. Biol Zbl 99: 311–323

    Google Scholar 

  • Krechting HCJM, Varga A, Bruinsma J (1978) Absence of cytokinin biosynthesis in pea seeds developing in vitro. Z Pflanzenphysiol 87: 91–94

    CAS  Google Scholar 

  • Kruyt W (1952) Effects of some plant growth substances on early growth of pea embryos in sterile culture; a study in connection with the problem of hormonisation of seeds. Konikl Nederl Akad Wetenschap Proc C 55: 503–514

    Google Scholar 

  • Kubaläkovä M, Tejklovä E, Griga M (1988) Some factors affecting root formation on in vitro regenerated pea shoots. Biol Plant 30: 179–184

    Article  Google Scholar 

  • Kunakh VA, Alkhimova EG, Voitjuk LI (1984 a) Variation in chromosome number in callus tissues and regenerants of pea. Citol Genet (Kiev) 18: 20–26 (in Russian)

    Google Scholar 

  • Kunakh VA, Alkhimova EG, Voitjuk LI, Alpatova LK (1984b) Obtaining of tissue cultures and organogenesis induction in Pisum sativum L. In: Novak FJ, Havel L, Dolezel J (eds) Proc Int Symp Plant tissue cell cul - Appl crop improv, Olomouc, pp 135–136

    Google Scholar 

  • Kunakh VA, Voitjuk LI, Alkhimova EG, Alpatova LK (1984c) Callus tissue formation and induction of organogenesis in Pisum sativum L. Fiziol Rast (Moscow) 31: 542–548 (in Russian)

    CAS  Google Scholar 

  • Kysely W, Jacobsen H J (1984) Induction of somatic embryos in pea and soybean. In: Novak FJ, Havel L, Dolezel J (eds) Proc Int Symp Plant tissue cell cult - Appl crop improv, Olomouc, pp 131–132

    Google Scholar 

  • Kysely W, Myers JR, Lazzeri PA, Collins GB, Jacobsen H J (1987) Plant regeneration via somatic embryogenesis in pea ( Pisum sativum L. ). Plant Cell Rep 6: 305–308

    Google Scholar 

  • Lamprecht H (1966) Die Entstehung der Arten und höheren Kategorien. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Landgren CR (1976 a) The influence of culture conditions on mitotic activity in protoplasts derived from Pisum root cortical expiants. Protoplasma 87:49–69

    Google Scholar 

  • Landgren CR (1976b) Patterns of mitosis and differentiation in cells from pea root protoplasts. Am J Bot 63: 473–480

    Article  Google Scholar 

  • Landgren CR (1981) Gibberellin enhancement of the enzymic release of Pisum root cell protoplasts. Physiol Plant 52: 349–352

    Article  CAS  Google Scholar 

  • Landgren CR, Torrey JG (1973) The culture of protoplasts derived from expiants of seedling pea roots. Coll Intern CNRS 212: 281–285

    Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation - a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60: 197–214

    Article  Google Scholar 

  • Lea PJ, Hughes JS, Miflin BJ (1979) Glutamine- and asparagine-dependent protein synthesis in maturing legume cotyledons cultured in vitro. J Exp Bot 30: 529–537

    Article  CAS  Google Scholar 

  • Lee KW, Min CK (1981) Cell wall regeneration of pea mesophyll protoplasts. Korean J Bot 24: 73–86

    Google Scholar 

  • Lee KW, Cho SH, Cha HC (1980) The isolation and fusion of pea and barley mesophyll protoplasts. Korean J Bot 23: 49–54

    Google Scholar 

  • Lepoivre P (1981) Effect de l’ascochitine sur les protoplasts de Pisum sativum L. Bull Rech Agron Gembloux 16: 27–33

    CAS  Google Scholar 

  • Leroux R (1968) Action de l’acide gibbérellique sur la rhizogenèze de fragments de tiges de Pois (Pisum sativum L.) cultivés in vitro en présence d’auxine à l’obscurité ou à la lumière. CR Acad Sci Paris 266: 106–108

    CAS  Google Scholar 

  • Leroux R (1973) Contribution a l’étude de la rhizogenèze de fragments de tiges de Pois (Pisum sativum L.) cultivés in vitro. Rev Cytol Biol Veg 36: 1–132

    Google Scholar 

  • Leurs CJ, Winter H, Wiersema PK, Helder RJ (1982) Light-dependent rubidium uptake into isolated mesophyll protoplasts from leaves of Pisum sativum. Physiol Plant 56: 339–342

    Article  CAS  Google Scholar 

  • Libbenga KR, Torrey JG (1973) Hormone-induced endoreduplication prior to mitosis in cultured pea root cortex cells. Am J Bot 60: 293–299

    Article  CAS  Google Scholar 

  • Lippmann B, Lippmann G (1984) Induction of somatic embryos in cotyledonary tissue of soybean, Glycine max ( L.) Merr. Plant Cell Rep 3: 215–218

    Google Scholar 

  • Malmberg RL (1979) Regeneration of whole plants from callus culture of diverse genetic lines of Pisum sativum L. Planta 146: 243–244

    Article  Google Scholar 

  • Malmberg RL (1982) The inheritance of the ability to regenerate plants from cell cultures of Pisum sativum L. A preliminary analysis. Pisum News 14: 39–40

    Google Scholar 

  • Marks GE, Davies DR (1979) The cytology of cotyledon cells and the induction of giant polytene chromosomes in Pisum sativum. Protoplasma 101: 73–80

    Article  Google Scholar 

  • Marx GA (1969) Two additional genes conditioning wax formation. Pisum Newsl 1: 10–11

    Google Scholar 

  • Michajlov OF, Bessonova VP (1975) Some data on the cytogenetic analysis of callus obtained from regenerating cotyledons of pea. Probi Onkol Teratol Rastenij, Nauka, Leningrad, pp 52–54 (in Russian)

    Google Scholar 

  • Millerd A, Spencer D, Dudman WF, Stiller M (1975) Growth of immature pea cotyledons in culture. Austr J Plant Physiol 2: 51–60

    Article  CAS  Google Scholar 

  • Monti LM, Grillo S (1983) Legume seed improvement for protein content and quality. Qual Plant Plant Foods Hum Nutr 32: 253–266

    Article  CAS  Google Scholar 

  • Mroginski LA, Kartha KK (1981) Regeneration of pea (Pisum sativum L. cv. Century) Plants by in vitro culture of immature leaflets. Plant Cell Rep 1: 64–66

    Google Scholar 

  • Mroginski LA, Kartha KK (1984) Tissue culture of legumes for crop improvement. In: Janick J (ed) Plant breeding reviews, vol 2. AVI, Westport, pp 215–264

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497

    Article  CAS  Google Scholar 

  • Murashko LN (1974) Interline and intervarietal differences in callus formation in stem expiants of pea. Nauc Dokl Vyss SK Biol Nauk 10: 111–113 (in Russian)

    Google Scholar 

  • Nandi S, Eriksson T (1977) Nuclear behaviour of pea leaf protoplasts. Hereditas 85: 49–55

    Article  Google Scholar 

  • Natali L, Cavallini A ( 1987 a) Regeneration of pea ( Pisum sativum L.) plantlets by in vitro culture of immature embryos. Plant Breed 99: 172–176

    Google Scholar 

  • Natali L, Cavallini A ( 1987 b) Nuclear cytology of callus and plantlets regenerated from pea ( Pisum sativum L.) meristems. Protoplasma 141: 121–125

    Google Scholar 

  • Netien G, Beauchesne G (1951) Action des sels de potassium des acides alpha-naphtylacétique et alpha-naphtylpyruvique sur la croissance des embryos excisés de pois “Alaska”. Bull Mens Soc Linn Lyon 20: 56–59

    CAS  Google Scholar 

  • Novák FJ, Lucretti S, Hermelin T, Donini B, Afza R, Daskalov S, Kubalâkovâ M, Griga M (1984a) Gamma ray irradiation effects on multiple shoot cultures of pea (Pisum sativum L.). In: Novâk FJ, Havel L, Dolezel J (eds) Proc Int Symp Plant Tissue cell cult - appl crop improv, Olomouc, pp 453–454

    Google Scholar 

  • Novák FJ, Lucretti S, Donini B, Afza R, Hermelin T (1984b) Flower and pod development in shoot tip and axillary bud culture of pea (Pisum sativum L.). In: Novák FJ, Havel L, Dolezel J (eds) Proc Int Symp Plant Tissue cell cult - appl crop improv, Olomouc, pp 133–134

    Google Scholar 

  • Paal H, Banyai D, Balatincz Z, Kurnik E (1982) In vitro morphogenetic capacity of pea embryos at the early heart stage. Agr Kôzlem 41: 249

    Google Scholar 

  • Paranjothy K, Raghavan V (1970) Effects of fluorinated pyrimidines on the growth of excised pea embryos. Plant Cell Physiol 11: 259–271

    CAS  Google Scholar 

  • Phillips GC, Collins GB (1981) Induction and development of somatic embryos from cell suspension cultures of soybean. Plant Cell Tissue Organ Cult 1: 123–129

    Article  CAS  Google Scholar 

  • Plemenkova SF, Lozovaja VV (1983) Uptake of 14C-glucose by pea isolated protoplast. 3-ja Vses Konf Transport Assimiljatov V Rast I Probl Sacharonakoplenija, Frunze, p 69 (in Russian)

    Google Scholar 

  • Poulsen MH, Sebro C (1983) Breeding of dried peas for Danish conditions. In: Thompson R, Casey R (eds) Perspectives for peas and lupins as protein crops. Nijhoff, The Hague, pp 169–172

    Google Scholar 

  • Praznovsky T, Kurnik E, Paal H, Dudits D (1981) Fusion between soybean (Glycine max) and pea (Pisum sativum): Protoplast division in heterokaryons. Biologia (Budapest) 29: 213–218

    Google Scholar 

  • Praznovsky T, Dudits D, Kurnik E, Paal H (1982) Use of soybean and pea protoplast fusion in cell hybridization experiments. Agr Közlem 41: 212

    Google Scholar 

  • Preobrazenskaja EV (1983) The comparison of organogenetic ability of different pea (Pisum sativum L.) lines and cultivars in callus culture. Tr 14 Konf Mol Ucenych Biol Fak MGU, Moscow, pp 134–137 (in Russian)

    Google Scholar 

  • Puonti-Kaerlas J, Eriksson T (1988) Improved protoplast culture and regeneration of shoots in pea ( Pisum sativum L. ). Plant Cell Rep 7: 242–245

    Google Scholar 

  • Rahat M, Reinhold L (1983) Rb+ uptake by isolated pea mesophyll protoplasts in light and darkness. Physiol Plant 59: 83–90

    Article  CAS  Google Scholar 

  • Rubluo A, Mroginski L, Kartha K (1982) Morphogenetic responses of pea leaflets cultured in vitro. In: Fujiwara A (ed) Plant Tissue cell cult 1982. Maruzen, Tokyo, pp 151–152

    Google Scholar 

  • Rubluo A, Kartha KK, Mroginski LA, Dyck J (1984) Plant regeneration from pea leaflets cultured in vitro and genetic stability of régénérants. J Plant Physiol 117: 119–130

    CAS  Google Scholar 

  • Sladky Z, Jandova B (1984) Micropropagation of pea, cucumber and potato. In: Novak FJ, Havel L, Dolezel J (eds) Proc Int Symp Plant Tissue cell cult appl crop Improv, Olomouc, pp 509–510

    Google Scholar 

  • Snoad B (1985) The need for improved pea-crop plant ideotypes. In: Hebblethwaite PD, Heath MC, Dawkins TCK (eds) The pea crop. A basis for improvement. Butterworths, London, pp 31–41

    Google Scholar 

  • Srivastava PS, Varga A, Bruinsma J (1980) Growth in vitro of fertilized ovules of pea, Pisum sativum L., with and without pods. Z Pflanzenphysiol 98: 347–354

    Google Scholar 

  • Stafford A, Davies DR (1979) The culture of immature pea embryos. Ann Bot 44: 315–321

    Google Scholar 

  • Syono K, Nagata T, Suzuki M, Kajita S, Matsui C (1979) Fusion of pea root nodule protoplasts with tobacco mesophyll protoplasts. Z Pflanzenphysiol 95: 449–458

    Google Scholar 

  • Therman E, Murashige T (1984) Polytene chromosomes in cultured pea roots ( Pisum, Fabaceae). Plant Syst Evol 148: 25–34

    Google Scholar 

  • Thompson JF, Madison JT, Muenster AE (1977) In vitro culture of immature cotyledons of soya bean (Glycine max L. Merr. ). Ann Bot 41: 29–39

    Google Scholar 

  • Torrey JG, Shigemura Y (1957) Growth and controlled morphogenesis in pea root callus tissue grown in liquid media. Am J Bot 44: 333–344

    Google Scholar 

  • van Staden J, Button J (1978) The cytokinin content of aseptically cultured pea fruits. Z Pflanzenphysiol 87: 129–135

    Google Scholar 

  • van’t Hof J, McMillan B (1969) Cell population kinetics in callus tissue of cultured pea root segments. Am J Bot 56: 42–51

    Article  Google Scholar 

  • White PR (1943) A handbook of plant tissue culture. J Cattel, Lancaster

    Book  Google Scholar 

  • Wright DJ (1985) Combining peas for human consumption. In: Hebblethwaite PD, Heath MC, Dawkins TCK (eds) The pea crop. A basis for improvement. Butterworths, London, pp 441–451

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Griga, M., Novák, F.J. (1990). Pea (Pisum sativum L.). In: Bajaj, Y.P.S. (eds) Legumes and Oilseed Crops I. Biotechnology in Agriculture and Forestry, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74448-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74448-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74450-1

  • Online ISBN: 978-3-642-74448-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics