Skip to main content

Carob (Ceratonia siliqua L.)

  • Chapter
Legumes and Oilseed Crops I

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 10))

Abstract

Carob (Ceratonia siliqua L.) is a dioecious tree (Fig. 1) of the family Leguminosae, subfamily Caesalpinoideae, noted for its great morphogenetic plasticity and its ability to produce and resist in drought stress conditions (Catarino et al. 1981; Nunes and Matos 1986). Carob has a great potential as a tree crop for restoring vegetation and improving the productivity of marginal drylands in many parts of the world. It is a multipurpose tree crop whose fruit may be utilized for food, fodder, sugar and syrup, industrial gums, and alcohol (Winer 1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bajaj YPS (ed) (1986) Biotechnology in agriculture and forestry. 1. Trees I. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Bajaj YPS (ed) (1989) Biotechnology in agriculture and forestry. 9. Protoplasts and genetic engineering II. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Alorda M, Medrano H (1986) Micropropagacion del algarrobo (Ceratonia siliqua L.) a partir deyemas caulinares de planta joven. 2nd Congr Soc Esp C Hor, pp 28–31

    Google Scholar 

  • Anonymous (1979) Tropical legumes. Resources for the future. Natl Acad Sci USA, Washington DC

    Google Scholar 

  • Bryant J (1986) The role of host-bacterium interactions in the Agrobacterium mediated transformation of plant cells. Biotechnology 4 (6): 131–132

    Google Scholar 

  • Carlson WA (1980) Carob as a food. Historical review. Lebensm Wiss Technol 13: 51–52

    Google Scholar 

  • Carlson WA (1986) The carob: evaluation of trees, pods and kernels. Int Tree Crops J 3: 281–290

    Google Scholar 

  • Catarino FM, Correia OA, Webb E, David M (1981) Morphological and physiological responses of the mediterranean evergreen sclerophyll, Ceratonia siliqua, to different light intensities. In: Margaris NS, Mooney HA (eds) Components of productivity of mediterranean climate regions - basic and applied aspects. Junk, The Hague

    Google Scholar 

  • Coit JE (1967) Carob varieties for the semi-arid southwest. Fruit Var Hort Dig 21: 5–9

    Google Scholar 

  • Davies WNL (1970) The carob tree and its importance in the agricultural economy of Cyprus. Econ Bot 24 (4): 460–470

    Article  Google Scholar 

  • DeCleene M, DeLey J (1976) The host range of crown-gall. Bot Rev 42: 389–466

    Article  Google Scholar 

  • Feio M, Almeida G (1980) The carob tree climate in Portugal. Port Acta Biol (A) XVI (1 -4): 19–32

    Google Scholar 

  • Fortin A, Piche Y (1979) Cultivation of Pinus strobus root-hypocotyl explants for synthesis of ectomycorrhizaea. New Phytol 83: 109–119

    Article  Google Scholar 

  • Gibson AH, Child JJ, Pagan JD, Scowcroft WR (1976) The induction of nitrogenase activity in Rhizobium by non-legume plant cells. Planta 128: 233–239

    Article  CAS  Google Scholar 

  • Graça JM (1986) A alfarrobeira no Algarve. 1° Encontro Farroba. AIDA Comissao Coordenadora Regiao Algarve

    Google Scholar 

  • Greenstock DW (1978) Food from locust plant. New Ecol 2: 55–56

    Google Scholar 

  • Hillcoat D, Lewis G, Verdcourt B (1979) A new species of Ceratonia (Leguminosae-Caesalpinoideae) from Arabia and Somali Republic. Kew Bull 35 (2): 261–271

    Article  Google Scholar 

  • Huxter TJ, Reid DM, Thorpe TA (1979) Ethylene production by tobacco ( Nicotiana tabacum) callus. Physiol Plant 46: 374–380

    Google Scholar 

  • James OJ, Knight VH, Turbon IJ (1979) Micropropagation of the red raspberry and the influence of phloroglucinol. Sci Hortic 12: 313–319

    Article  Google Scholar 

  • Johnson CM, Stout PR, Broyer TC, Carlton AB (1957) Comparative chlorine requirements of different plant species. Plant Soil VIII: 337–353

    Google Scholar 

  • Kadkade PG, Seibert M (1977) Phytochrome-regulated organogenesis in lettuce tissue culture. Nature (Lond) 270: 49–50

    Article  Google Scholar 

  • Kadkade PG, Wetherbee P, Jopson H, Botticelli C (1978) Photoregulation of organogenesis in pine embryo and seedling. In: 4th Int Congr plant tissue and cell culture. Abstr, Calgary 108: 29

    Google Scholar 

  • LaRue TAG, Gamborg OL (1971) Ethylene production by plant cell cultures. Variations in production during growing cycle and in different plant species. Plant Physiol 48: 394–398

    Google Scholar 

  • Leopold AC, Kriedemann PE (1975) Plant growth and development. McGraw-Hill, NY

    Google Scholar 

  • Linskens HF, Scholten W (1980) The flower of carob. Port Acta Biol (A) XVI (l-4): 95–102

    Google Scholar 

  • Loock EEM (1974) Three useful leguminous fodder trees. Farm S Africa 22 (250): 7–12

    Google Scholar 

  • Marti JT (1984) El algarrobo. Su importancia en la cuenca mediterranica. Agricultura 5: 474–478

    Google Scholar 

  • Marti JT (1985) Comercialización y variedades de algarroba HDMin Agrie Pescas Alimentación 1 /85: 1–24

    Google Scholar 

  • Martins-Loução MA (1985) Estudos fisiologicos e microbiologicos da associaçâo da alfarrobeira (Ceratonia siliqua L.) com bacterias de Rhizobiaceae. Thesis, Univ Lisboa

    Google Scholar 

  • Martins-Loução MA (1986) Isolation of protoplasts from hypocotyl-root segments of carob germinated seedlings. In: 6th Int Congr plant tissue and cell culture. Abstr, Univ Minnesota, Minneapolis

    Google Scholar 

  • Martins-Loução MA, Duarte P (1987) Effect of ammonium and nitrate nutrition on the growth of carob (Ceratonia siliqua L.) plants. In: Ulrich W, Aparicio PJ, Syrett PJ, Castillo F (eds) Inorganic Nitrogen Metabolism. Springer, Berlin Heidelberg New York, pp 250–252

    Chapter  Google Scholar 

  • Martins-Loução MA, Rodriguez-Barrueco C (1981) Establishment of proliferating callus from roots, cotyledons and hypocotyls of carob ( Ceratonia siliqua L.) seedlings. Z Pflanzenphysiol 103: 297–303

    Google Scholar 

  • Martins-Loução MA, Rodriguez-Barrueco C (1982) Studies on nitrogenase activity of carob (Ceratonia siliqua L.) callus cultures associated with Rhizobium. In: Fujiwara A (ed) Plant tissue culture 1982. Maruzen, Tokyo, pp 671–672

    Google Scholar 

  • Martins-Loução MA, Rodriguez-Barrueco C ( 1983 a) In vitro nitrogenase activity of Rhizobium associated with carob excised roots. In: Veeger C, Newton WE (eds) Advances in nitrogen fixation, pp 514

    Google Scholar 

  • Martins-Loução MA, Rodriguez-Barrueco C ( 1983 b) Ethylene production by carob ( Ceratonia siliqua L.) callus cultures on varying media. Physiol Plant 58: 204–208

    Google Scholar 

  • Martins-Loução MA, Brito de Carvalho J (1989) A Alfarrobeira. Riqueza actual e potencial para os paises mediterranicos. DGPA Min Agr Pali

    Google Scholar 

  • Medrano H (1986) Propagación mediante estanquillado. Io Encontro Farroba. Aida, Comissâo Coordenadora Regiâo Algarve

    Google Scholar 

  • Merwin ML (1980) The culture of carob (Ceratonia siliqua) L.) for food, fodder and fuel in semi-arid environments. In: YMCA (ed) Tree Crops for Energy Co-Production on Farms. Ester Park, Colorado

    Google Scholar 

  • Mitrakos K (1968) The carob. Tate and Lyle, Keston, UK

    Google Scholar 

  • Morgan DC, Smith H (1981) Non-photosynthetic responses to light quality. Encyclop Plant Physiol 12A: 109–135

    Google Scholar 

  • Nitsch JP, Nitsch C (1965) Néoformation des fleurs in vitro chez une espèce de jours courts: Plumbago indica L., Ann Physiol Veg 7: 251–256

    Google Scholar 

  • Nunes A, Matos C (1986) Comportamento fisiológico da alfarrobeira em relaçâo com a água disponivel. Io Encontro Farroba. AIDA, Comissâo Coordenadora Regiâo Algarve

    Google Scholar 

  • Orphanos PI (1980) Practical aspects of carob cultivation in Cyprus. Port Acta Biol (A) XVI (1– 4): 221–228

    Google Scholar 

  • Phillips DA (1974) Factors affecting the reduction of acetylene by Rhizobium soybean cell associations in vitro. Plant Physiol 53: 67–72

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro O (1980) Le caroubier. Ses conditions naturelles, son expansion, ses rapports avec l’agriculture. Port Acta Biol (A) XVI (1-4): 3–10

    Google Scholar 

  • Scaramuzzi F, Porcelli-Armenise V, Gaetano A (1971) Recherches sur le comportement et le rythme annuel de la calogenèse de fragments de tiges de certains arbres. CR Acad Sci Paris 272: 2544–2547

    Google Scholar 

  • Schaudinischsky LH, Schiller G, Keller Y (1982) Acoustic properties of individual trees and forest strips. Forstarchiv 53 (2): 52–57

    Google Scholar 

  • Schetter C, Hess D (1977) Nitrogenase activity in in vitro associations between callus tissues of non-leguminous horticultural plants and Rhizobium. Plant Sci Lett 9: 1–5

    Article  CAS  Google Scholar 

  • Schilperoort RA, Klapwijk PM, Hooykaas PJJ, Koekman BP, Ooms G, Otten LAM, Wurzer-Figurelli EM, Wullems GJ, Rorsch A (1978) A. tumefaciens plasmids as vectors for genetic transformation of plant cells. In: Thorpe TA (ed) Frontiers of plant tissue culture. International Association for Plant Tissue Culture, Calgary Univ, pp 85–94

    Google Scholar 

  • Schroder CA (1961) Some morphological aspects of fruit tissues grown in vitro. Bot Gaz 122: 198–204

    Article  Google Scholar 

  • Schwab L, Martins-Louçâo MA (1987) Shoot formation in Ceratonia siliqua hypocotyl callus. In: Fito P, Mulet A (eds) Generalitat Valenciana Con. Agr Pescas, pp 245–254, 2nd Carob Symp

    Google Scholar 

  • Scowcroft WR, Gibson AH (1975) Nitrogen fixation by Rhizobium associated with tobacco and cowpea cell cultures. Nature (Lond) 253: 351–352

    Article  CAS  Google Scholar 

  • Sebastian KT, McComb JA (1986) A micropropagation system for carob ( Ceratonia siliqua L. ). Sci Hortic 28: 127–131

    Google Scholar 

  • Thomas V, Mehta AR (1983) Effect of phloroglucinol on shoot growth and initiation of roots in carob tree cultures grown in vitro. In: Giles KL, Sen SK (eds) Plant Cell Culture in Crop Improvement. Plenum Press, New York, pp 451–457

    Google Scholar 

  • Thorpe TA (1980) Organogenesis in vitro: structural, physiological and biochemical aspects. Int Rev Cyt Suppl 11 A: 71–111

    Google Scholar 

  • Vardar Y, Seamen O, Òzturk M (1980) Some distributional problems and biological characteristics of Ceratonia in Turkey. Port Acta Biol (A) XVI (1–4): 75–86

    Google Scholar 

  • Winer N (1980) The potential of carob (Ceratonia siliqua L.). Int Tree Crops J 1: 15–26

    Google Scholar 

  • Zohary M (1973) Geobotanical foundations of the Middle-East. Gustav Fischer Verlag, Stuttgart

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Martins-Loução, M.A. (1990). Carob (Ceratonia siliqua L.). In: Bajaj, Y.P.S. (eds) Legumes and Oilseed Crops I. Biotechnology in Agriculture and Forestry, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74448-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74448-8_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74450-1

  • Online ISBN: 978-3-642-74448-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics