Skip to main content

Transformation in Legumes

  • Chapter
Legumes and Oilseed Crops I

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 10))

Abstract

Plant breeders aim to improve the performance of cultivated species by developing new varieties for specific conditions. With traditional breeding methods the available gene pool is restricted by the sexual incompatibility of many interspecific and intergeneric crosses. One solution is to manipulate (transform) existing species genetically, introducing foreign genes from diverse sources which would normally be inaccessible. The resulting transgenic plants may be used directly, or more probably, as the starting material in a conventional breeding programme. In this way, the gene pool may be substantially broadened.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armstead IP, Webb KJ (1987) Effect of age and genotype of tissue on genetic transformation of Lotus corniculatus by Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 9: 95–101

    Article  Google Scholar 

  • Bajaj YPS (ed) (1989) Biotechnology in agriculture and forestry. 9. Plant protoplasts and genetic engineering II. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Baldes R, Moos M, Geider K (1987) Transformation of soybean protoplasts from permanent suspension cultures by cultivation with cells of Agrobacterium tumefaciens. Plant Mol Biol 9 (2): 135–146

    Article  CAS  Google Scholar 

  • Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucl Acids Res 12 (22): 8711–8721

    Article  PubMed  CAS  Google Scholar 

  • Boulter D, Evans IM, Ellis JR, Shirsat AH, Gatehouse JA, Croy RRD (1987) Differential gene expression in the development of Pisum sativum. Plant Physiol Biochem 25 (3): 283–289

    CAS  Google Scholar 

  • Christou P, Murphy JE, Swain WF (1987) Stable transformation of soybean by electroporation and root formation from transformed callus. Proc Natl Acad Sci USA 84: 3962–3966

    Article  PubMed  CAS  Google Scholar 

  • Cocking EC (1983) Genetic transformation through somatic hybridisation. SEB Seminar Series. In: Mantell SH, Smith H (eds) Plant Biotechnology. Cambridge Univ Press, pp 241–250

    Google Scholar 

  • Comai L, Facciotti D, Hiatt WR, Thompson G, Rose RG, Stalker DM (1985) Expression in plants of a mutant AroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature (Lond) 317: 741–744

    Article  CAS  Google Scholar 

  • Dale PJ (1983) Protoplast culture and plant regeneration of cereals and other recalcitrant crops. 6th Int Protoplast Symp, Lec Proc. Birkhauser-Verlag, Basel, pp 31–41

    Google Scholar 

  • Deak M, Kiss GB, Koncz C, Dudits D (1986) Transformation of Medicago by Agrobacterium-medizted gene transfer. Plant Cell Rep 5: 97–100

    Article  CAS  Google Scholar 

  • De Block M, Herrerra-Estrella L, Van Montagu M, Schell J, Zambryski P (1984) Expression of foreign genes in regenerated plants and their progeny. EMBO J 3: 1681–1689

    PubMed  Google Scholar 

  • De Cleene M, De Ley J (1977) Host range of crown gall. Bot Rev 42: 389–466

    Article  Google Scholar 

  • de la Pena A, Lorz H, Schell J (1987) Transgenic rye plants obtained by injecting DNA into young floral tillers. Nature (Lond) 325: 274–276

    Article  Google Scholar 

  • Ellis JR, Shirsat AH, Hepher A, Yarwood JN, Gatehouse JA, Croy RRD, Boulter D (1988) Tissue-specific expression of a pea legumin gene in seeds of Nicotiana plumbaginifolia. Plant Mol Biol 10: 203–214

    Article  CAS  Google Scholar 

  • Facciotti D, O’Neal JK, Lee S, Shewmaker CK (1985) Light-inducible expression of a chimeric gene in soybean tissue transformed with Agrobacterium. Bio/technology 3: 241–246

    Article  CAS  Google Scholar 

  • Fischoff DA, Bowdish KS, Perlak FJ, Marrone PG, McCormick SM, Niedermeyer JG, Dean AD, Kusano-Kretzmer K, Mayer EK, Rochester DE, Rogers SG, Fraley RT (1987) Insect-tolerant transgenic tomato plants. Bio/technology 5: 807–813

    Article  Google Scholar 

  • Ford J (1988) Sheep will grow woollier on a bioengineered diet. New Sci 117 (10 March): 24

    Google Scholar 

  • Garcia JA, Hille J, Vos P, Goldbach R (1987) Transformation of cowpea Vigna unguiculata with a full-length DNA copy of cowpea mosaic virus m-RNA. Plant Sci 48: 89–98

    Article  CAS  Google Scholar 

  • Hain R, Stabel P, Czernilofsky AP, Steinbiss HH, Herrerra-Estrella L, Schell J (1985) Uptake, integration, expression and genetic transmission of a selectable chimaeric gene by plant protoplasts. Mol Gen Genet 199: 161–168

    Article  CAS  Google Scholar 

  • Hauptmann RM, Ozias-Akins P, Vasil V, Tabaeizadeh Z, Rogers SG, Horsch RB, Vasil IK, Fraley RT (1987) Transient expression of electroporated DNA in monocotyledonous and dicotyledonous species. Plant Cell Rep 6: 265–270

    Article  CAS  Google Scholar 

  • Herrerra-Estrella L, De Block M, Messens E, Hernalsteens JP, Van Montagu M, Schell J (1983) Chimaeric genes as dominant selectable markers in plant cells. EMBO J 2 (60): 985–987

    Google Scholar 

  • Hood EE, Jen G, Kayes L, Kroner J, Fraley RT, Chilton M-D (1984) Restriction endonuclease map of pTiBO 542, a potential Ti-plasmid vector for genetic engineering of plants. J Bacteriol 166: 88–94

    Google Scholar 

  • Horsch RB, Fry JE, Hoffman NL, Eichholz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227: 1229–1231

    Article  CAS  Google Scholar 

  • Jensen JS, Marcker KA, Otten L, Schell J (1986) Nodule-specific expression of a chimaeric soybean leghaemoglobin gene in transgenic Lotus corniculatus. Nature (Lond) 321: 669–674

    Article  CAS  Google Scholar 

  • Kohler F, Golz C, Eapen S, Kohn H, Schieder O (1987) Stable transformation of moth bean Vigna aconitifolium via direct gene transfer. Plant Cell Rep 6: 313–317

    Article  Google Scholar 

  • Koshiba T, Theologis A (1987) Expression of auxin regulated genes during early stages of Agrobacterium tumefaciens-mediated oncogenesis in pea tissue. Plant Physiol 4 Suppl 83: 153

    Google Scholar 

  • Manners JM (1987) Transformation of Stylosanthes spp. using Agrobacterium tumefaciens. Plant Cell Rep 6: 204–207

    Article  CAS  Google Scholar 

  • Mariotti D, Davey MR, Draper J, Freeman JP, Cocking EC (1984) Crown gall tumorigenesis in the forage legume Medicago sativa L. Plant Cell Physiol 25 (3): 473–482

    CAS  Google Scholar 

  • Matthysse AG (1986) Initial interactions of Agrobacterium tumefaciens with plant host cells. CRC Crit Rev Microbiol 13: 281–307

    Article  CAS  Google Scholar 

  • Matze AJM, Chilton M-D (1981) Site-specific insertion of genes into T-DNA of the Agrobacterium tumour-inducing plasmid: an approach to genetic engineering of higher plant cells. J Mol Appl Genet 1: 39–49

    Google Scholar 

  • McCormick S, Niedermeyer J, Fry J, Barnason A, Horsch R, Fraley R (1986) Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep 5: 81–84

    Google Scholar 

  • Negrutiu I, Mouras A, Horth M, Jacobs M (1987) Direct gene transfer to plants: present development and some future prospectives. Plant Physiol Biochem 25 (4): 493–503

    CAS  Google Scholar 

  • Newell CA, Luu HT (1985) Protoplast culture and plant regeneration in Glycine canescens F. J Herm. Plant Cell Tissue Organ Cult 4: 145–149

    Article  Google Scholar 

  • Nisbet GS (1987) Transformation of Lotus corniculatus and regeneration of transgenic plants. MSc Thesis, Univ Wales

    Google Scholar 

  • Pedersen HC, Christiansen J, Wyndaele R (1983) Induction and in vitro culture of soybean crown gall tumours. Plant Cell Rep 2: 201–204

    Google Scholar 

  • Petit A, Berkaloff A, Tempe J (1986) Multiple transformations of plant cells by Agrobacterium may be responsible for the complex organisation of T-DNA in crown gall and hairy root. Mol Gen Genet 202: 388–393

    Article  CAS  Google Scholar 

  • Potrykus I, Shillito RD, Saul MW, Paszkowski J (1985) Direct gene transfer - state of the art and future potential. Plant Mol Biol Rep 3: 117–128

    Article  CAS  Google Scholar 

  • Reich TJ, Iyer VN, Miki BL (1986) Efficient transformation of alfalfa protoplasts by the intranuclear microinjection of Ti Plasmids. Bio/technology 4: 1001–1004

    Article  CAS  Google Scholar 

  • Shahin EA, Spielmann A, Sukhapinda K, Simpson RB, Yashar M (1986) Transformation of cultivated alfalfa using disarmed Agrobacterium tumefaciens. Crop Sci 26: 1235–1239

    Article  CAS  Google Scholar 

  • Smith SM, Ellis RJ (1981) Light-stimulated accumulation of transcripts of nuclear and chloroplast genes for ribulosebisphosphate carboxylase. J Mol Appl Genet 1: 127–137

    PubMed  CAS  Google Scholar 

  • Spano L, Mariotti D, Pezzotti M, Damiani F, Arcioni S (1987) Hairy root transformation in alfalfa CMedicago sativa L.). Theor Appl Genet 73: 523–530

    Article  CAS  Google Scholar 

  • Sukhapinda K, Spivey R, Shahin EA (1987) Ri-plasmid as a helper for introducing vector DNA into alfalfa plants. Plant Mol Biol 8: 209–216

    Article  CAS  Google Scholar 

  • Tao W, Wilkinson J, Stanbridge EJ, Berns MW (1987) Direct gene transfer into human cultured cells facilitated by laser micropuncture of the cell membrane. Proc Natl Acad Sci USA 84: 4180–4184

    Article  PubMed  CAS  Google Scholar 

  • Vlachova M, Metz BA, Schell J, de Bruijn FJ (1987) The tropical legume Sesbania rostrata: tissue culture, plant regeneration and infection with Agrobacterium tumefaciens and rhizogenes strains. Plant Sci 50: 213–223

    CAS  Google Scholar 

  • Webb KJ (1986) Transformation of forage legumes using Agrobacterium tumefaciens. Theor Appl Genet 72: 53–58

    Article  Google Scholar 

  • Webb KJ (1988) Recent developments in the regeneration of agronomically important crops from protoplasts. Plant Cell Tissue Organ Cult 12: 127–131

    Article  Google Scholar 

  • Webb KJ, Woodcock S, Chamberlain DA (1987) Plant regeneration from protoplasts of Trifolium repens and Lotus corniculatus. Plant Breed 98: 111–118

    Article  Google Scholar 

  • White DWR, Greenwood D (1987) Transformation of the forage legume Trifolium repens L. using binary Agrobacterium vectors. Plant Mol Biol 8: 461–469

    Article  CAS  Google Scholar 

  • Wright RL, Somers DA, McGraw RL (1986) Somatic hybridisation between birdsfoot trefoil (Lotus corniculatus) and L. coimbriensis. 6th Int Congr Plant Tissue Cell Cult, abstr Univ Minnesota, Minneapolis, p 82

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nisbet, G.S., Webb, K.J. (1990). Transformation in Legumes. In: Bajaj, Y.P.S. (eds) Legumes and Oilseed Crops I. Biotechnology in Agriculture and Forestry, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74448-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74448-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74450-1

  • Online ISBN: 978-3-642-74448-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics