Cell and Tissue Culture of Stylosanthes spp.

  • E. G. M. Meijer
  • L. Szabados
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 10)


The taxonomically complex genus Stylosanthes (family Leguminosae, subfamily Papilinoidae, tribe Stylosanthinae or Aeschynomeneae) consists of approximately 50, mainly herbaceous species and subspecies (Allen and Allen 1981; ’t Mannetje 1984). Although the genus is native to Central and South America, Stylosanthes species can now be found in the tropical and subtropical regions of the Americas, Africa, Asia, and Australia. Many members of this genus exhibit vigorous growth, a deep-rooting habit, and considerable tolerance to both drought and waterlogging. These species are used as forage crops, as green manure, for soil conservation and as a cover crop in the areas listed above (e.g., Edye et al. 1973; Burt et al. 1980). The most commonly cultivated species is S. guianenis (Aubl.) Sw. (sometimes spelled S. guianensis, see ’t Mannetje (1977) and Burt et al. (1980) for discussions), also known as stylo or Brazilian lucerne. S. guianensis is widely grown in Africa, Asia, Australia, South and Central America, and extensive breeding programs are under way in Australia and, more recently, also in South America. Other economically impartant species are S. capitata, S. erecta, S. gracilis (all Taub.), S. hamata (L.) Taub., S. humilis H.B.K. (also known in Australia as Townsville stylo), S. mucronota Willd., and S. sundaica Taub. The cultivated Stylosanthes species generally have coarse foliage, a tendency to root at the nodes, and often possess profusely nodulated root systems. A rather interesting aspect of the biology of Stylosanthes species (as well as of other members of the Stylosanthinae or Aeschynomeneae such as Arachis and Aeschynomene spp.) is the somewhat unusual process, of rhizobial infection and root nodule development, which proceeds, unlike in other legumes without the formation of infection threads (Chandler et al. 1982; see also review by Meijer and Broughton 1982).


Callus Culture Microspore Culture Mesophyll Protoplast Shoot Organogenesis Infection Thread 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen ON, Allen EK (1981) The Leguminosae. A source book of characteristics, uses and nodulation. Univ Press, Madison, WisconsinGoogle Scholar
  2. Binding H, Nehls R (1978) Regeneration of isolated protoplasts of Vicia faba. Z Pflanzenphysiol 88: 327–332Google Scholar
  3. Burt RL, Williams WT, Grof B (1980) Stylosanthes-structure, adaptation and utilisation. In: Summerfield RJ, Bunting AH (eds) Advances in legume science. R Bot Gard, Kew, pp 553–558Google Scholar
  4. Cameron DF (1974) Novel variation from wide crosses in the Stylosanthes genus. Proc 11th Int Grassland Congr, Moscow, pp 726–731Google Scholar
  5. Chandler MR, Date RA, Roughley RJ (1982) Infection and root nodule development in Stylosanthes species by Rhizobium. J Exp Bot 33: 47–57CrossRefGoogle Scholar
  6. Edye LA, Burt RL, Williams WT, Grof B (1973) A preliminary agronomic evaluation of Stylosanthes species. Austr J Agric Res 24: 511–525CrossRefGoogle Scholar
  7. Godwin ID, Gordon GH, Cameron DF (1986) Callus culture derived somaclonal variation in the tropical pasture legumes Stylosanthes guianensis, S. hamata and S. scabra. In: 6th Int Congr Plant tissue cell culture Abstr, Univ Minnesota, Minneapolis, pp 253Google Scholar
  8. Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227: 1229–1231CrossRefGoogle Scholar
  9. Kao KN (1977) Chromosomal behaviour in somatic hybrids of soybean-Nicotiana glauca. Mol Gen Genet 150: 225–230CrossRefGoogle Scholar
  10. Larkin PJ, Scowcroft WR (1981) Somoclonal variation- a novel source of variability from cell culture for plant improvement. Theor Appl Genet 60: 197–214CrossRefGoogle Scholar
  11. Lenne JM, Calderon MA (1984) Disease and pest problems of Stylosanthes. In: Stace HM, Edye LA (eds) The biology and agronomy of Stylosanthes. Academic Press, New York, pp 279–295Google Scholar
  12. Li Z (1981) Plantlet regeneration from mesophyll protoplasts of Digitalis lanata Ehrh. Theor Appl Genet 60:345—347Google Scholar
  13. Li Z (1981) Plantlet regeneration from mesophyll protoplasts of Digitalis lanata Ehrh. Theor Appl Genet 60: 345–347CrossRefGoogle Scholar
  14. ’t Mannetje L (1977) A revision of the varieties of Stylosanthes guianensis (Aubl.) Sw. Austr J Bot 25: 347–362CrossRefGoogle Scholar
  15. ’t Mannetje L (1984) Considerations on the taxonomy of the genus Stylosanthes. In: Stace HM, Edye LA (eds) The biology and agronomy of Stylosanthes. Academic Press, New York, pp 1–12Google Scholar
  16. Meijer EGM (1982 a) Shoot formation in tissue cultures of three cultivars of the tropical pasture legume Stylosanthes guianensis (Aubl.) Sw. Z Pflanzenzuecht 89:169–172Google Scholar
  17. Meijer EGM (1982 b) High-frequency plant regeneration from hypocotyl- and leaf-derived tissue cultures of the tropical pasture legume Stylosanthes humilis. Physiol Plant 56:381–385Google Scholar
  18. Meijer EGM (1984) Some properties of long-term tissue cultures of Stylosanthes guianensis (Aubl.) Sw. (Leguminosae). J Plant Physiol 117: 131–135Google Scholar
  19. Meijer EGM, Broughton WJ (1981) Regeneration of whole plants from hypocotyl-, root- and leaf-derived tissue cultures of the pasture legume Stylosanthes guianensis. Physiol Plant 52: 280–284CrossRefGoogle Scholar
  20. Meijer EGM, Broughton WJ (1982) Biology of legume-Rhizobium interactions in nodule formation, p. 107 –129. In: Kahl G, Schell JS (eds) Molecular biology of plant tumors. Academic Press, New York, pp 107–129Google Scholar
  21. Meijer EGM, Steinbiss HH (1983) Plantlet regeneration from suspension and protoplast cultures of the tropical pasture legume Stylosanthes guianensis ( Aubl.) Sw. Ann Bot 52: 305–310Google Scholar
  22. Mroginski LA, Kartha KK (1981) Regeneration of plants from callus tissue of the forage legume Stylosanthes guianensis. Plant Sci 23: 245–251Google Scholar
  23. Mroginski LA, Kartha KK (1984) Tissue culture of legumes for crop improvement. Plant Breed Rev 2: 215–264Google Scholar
  24. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497CrossRefGoogle Scholar
  25. Rey HY, Bovo OA, Mroginski LA (1985) Cultivo in vitro de tejidos de tres especies de Stylosanthes (Leguminosae) Agronomie 5: 819–824Google Scholar
  26. Schenk RU, Hildebrandt AC (1976) Medium and techniques for induction and growth of monocotyledonous and dicotyledenous plant cell cultures. Can J Bot 50: 199–204CrossRefGoogle Scholar
  27. Scowcroft WR, Adamson JA (1976) Organogenesis from callus cultures of the legume Stylosanthes hamata. Plant Sci Lett 7: 39–42CrossRefGoogle Scholar
  28. Sutherst RW, Jones RJ, Schitzeling HJ (1982) Tropical legumes of the genus Stylosanthes immobilize and kill cattle ticks. Nature (Lond) 295: 320–321CrossRefGoogle Scholar
  29. Szabados L, Roca WM (1986) Regeneration of isolated mesophyll and cell suspension protoplasts to plants in Stylosanthes guianensis. Plant Cell Rep 5: 174–177CrossRefGoogle Scholar
  30. Szabados L, Tabares E, Lopez P, Miles J, Lenne J, Roca W (1986) Variability in Stylosanthes cell and tissue culture. In: 6th Int Congr Plant tissue and cell culture. Abstr, Univ Minnesota, Minneapolis, p 271Google Scholar
  31. Tabares E, Pineda O, Lopez P, Szabados L, Roca W (1986) Eusqueda de variación somaclonal an Stylosanthes guianensis usando cultivo de tejidos. I V Congr Latinoam Bot, MedellinGoogle Scholar
  32. Williams EG, De Lautour G (1980) The use of embryo culture with transplanted nurse endosperm for the production of interspecific hybrids in pasture legumes. Bot Gaz 141: 252–314CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • E. G. M. Meijer
    • 1
  • L. Szabados
    • 2
  1. 1.Dept. of Plant Molecular BiologyLeiden UniversityLeidenThe Netherlands
  2. 2.C.I.A.TCaliColombia

Personalised recommendations