Skip to main content

Wide Hybridization in Legumes and Oilseed Crops Through Embryo, Ovule, and Ovary Culture

  • Chapter
Legumes and Oilseed Crops I

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 10))

Abstract

Legumes and oilseed crops are the most important source of plant proteins and energy, and are cultivated throughout the world in wide areas (Table 1). The grain legumes are grown in the tropics, subtropics and temperate zones. They are amongst the earliest food crops to be cultivated by man, and constitute one of the most importent sources of dietary protein, especially in Asia, Latin America and Africa. Some species which are commonly cultivated for human consumption are peanut (Arachis hypogaea), pigeon pea (Cajanus cajan), chickpea (Cicer arietinum), soybean (Glycine max), lathyrus pea (Lathyrus sativus), lentil (Lens esculenta), lima bean (Phaseolus lunatus), kidney or navy bean (Phaseolus vulgaris), garden pea (Pisum sativum), winged bean (Psophocarpus tetragonolobus), broad bean (Vicia faba), blackgram (Vigna mungo), greengram (Vigna radiata), cowpea (Vigna unguiculata), etc. They are of paramount importance not only for their value as human food, but also because of the high protein content for livestock and fish feed. Moreover, legumes are endowed with the ability to fix atmospheric nitrogen and thus improve soil fertility. In different countries they are consumed in various forms, such as immature seed, dry grain, as condiments or roasted grain, for flour production, and as fermented products (Parpia 1973). The protein content of legumes is affected by genetic as well as environmental factors, while the nutritional quality depends on several factors such as their digestibility, balance of essential amino acids, and the presence of certain toxic substances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Afzal M, Sikka SM, Rehman A (1945) Cytogenetic investigations in some arboreum-anomalum crosses. Indian J Genet 5: 82–91

    Google Scholar 

  • Ahn CS, Hartman RW (1978) Interspecific hybridization between mung bean (Vigna radiata L.) and adzuki bean (V. angularis ). J Am Soc Hort Sci 103: 3–6

    Google Scholar 

  • Aykroyd WR, J Doughty (1966) Legumes in human nutrition. FAO, Rome

    Google Scholar 

  • Bajaj S (1972) Biological value of legume proteins as influenced by genetic variation. In: Miller M (ed) Nutritional improvement of food legumes by breeding. Wiley, New York, pp 223–232

    Google Scholar 

  • Bajaj S, Mickelson O, Baker LR, Markarian D (1971) The quality of protein in various lines of pea. Br J Nutr 25: 207–212

    Article  PubMed  CAS  Google Scholar 

  • Bajaj YPS (1965) Development of ovules of Abelmoschus esculentus L. var. Pusa Sawani in vitro. Proc Natl Inst Sci (India) 30: 175–185

    Google Scholar 

  • Bajaj YPS (1966) Growth of Hyoscyamus niger ovaries in culture. Phyton 23: 57–62

    Google Scholar 

  • Bajaj YPS (1984) Peanut. In: Ammirato PV, Evans DA, Sharp WR, Yamada Y (eds) Handbook of plant cell culture, vol 3. MacMillan, New York, pp 193–225

    Google Scholar 

  • Bajaj YPS (ed) (1986) Biotechnology in agriculture and forestry 2. Crops I. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Bajaj YPS (ed) ( 1988 a) Biotechnology in agriculture and forestry 6. Crops II. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Bajaj YPS ( 1988 b) Induction and cryopreservation of somaclonal variation in peanut (Arachis hypogaea L.). Proc Int Congr Plant Tissue Cult — Tropical Species. Bogota, Colombia

    Google Scholar 

  • Bajaj YPS (ed) ( 1989 a) Biotechnology in agriculture and forestry 9. Plant protoplasts and genetic engineering II. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Bajaj YPS (1989b) Genetic engineering and in vitro manipulation of plant cells — technical advances. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry 9. Plant protoplasts and genetic engineering II. Springer, Berlin Heidelberg New York Tokyo, pp 1–25

    Google Scholar 

  • Bajaj YPS (1989c) Recent advances in the isolation and culture of protoplasts and their implications in crop improvement. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry 8. Plant protoplasts and genetic engineering I. Springer, Berlin Heidelberg New York Tokyo, pp 3–22

    Google Scholar 

  • Bajaj YPS, Gill MS (1985) In vitro induction of genetic variability in cotton ( Gossypium spp ). Theor Appl Genet 70: 363–368

    Google Scholar 

  • Bajaj YPS, MS Gill (1987) Biotechnology of cotton improvement. In: Crocomo OJ et al. (eds) Biotechnology of plants and microorganisms. Ohio State Univ, Columbus, pp 118–151

    Google Scholar 

  • Bajaj YPS, Gosal SS (1982) Induction of genetic variability in grain-legumes through tissue culture. In: Rao AN (ed) Tissue culture of economically important plants. COSTED, Singapore, pp 25–41

    Google Scholar 

  • Bajaj YPS, Kumar P, Labana KS (1982) Interspecific hybridization in the genus Arachis through embryo culture. Euphytica 31: 365–370

    Article  Google Scholar 

  • Bajaj YPS, Mahajan SK, Labana KS (1986) Interspecific hybridization of Brassica napus and B. juncea through ovary, ovule and embryo culture. Euphytica 35: 103–109

    Article  Google Scholar 

  • Belivanis T, Dorè C (1986) Interspecific hybridization of Phaseolus vulgaris L. and Phaseolus angus-tissimus A. Gray using in vitro embryo culture. Plant Cell Rep 5: 329–331

    Google Scholar 

  • Bohorova N, Atanassov A, Georgieva-Todorova J (1985) In vitro organogenesis, androgenesis and embryo culture, in the genus Helianthus L. Z. Pflanzenzuecht 95: 35–44

    Google Scholar 

  • Boling M, Matlock RS (1961) Mangbean hybridization technique. Agron J 53: 54

    Article  Google Scholar 

  • Braak JP, Kooistra E (1975) A successful cross between Phaseolus vulgaris L. and P. ritensis Jones. With the aid of embryo culture. Euphytica 24: 669–679

    Google Scholar 

  • Bressani R (1973) Legumes in human diets and how they might be improved. In: Nutritional improvement of food legumes by breeding. PAG, UN, New York, pp 15–42

    Google Scholar 

  • Broué P, Douglass J, Grace JP, Marshal DR (1982) Interspecific hybridization of soybeans and perennial Glycine species indigenous to Australia via embryo culture. Euphytica 31: 715–724

    Article  Google Scholar 

  • Cherry JP (1977) Potential sources of peanut seed proteins and oil in the genus Arachis. J Agric Food Chem 25: 186–193

    Article  CAS  Google Scholar 

  • Chowdhury RK, Chowdhury JB, Singh VP (1977) An amphidiploid between Vigna radiata var. radiata and Vigna mungo. Crop Improv 4: 113–114

    Google Scholar 

  • Cocking EC, Davey MR (1987) Gene transfer in cereals. Science 236: 1259–1262

    Article  PubMed  CAS  Google Scholar 

  • Cohen D, Ladizinsky, Ziv M, Muehlbauer FJ (1984) Rescue of interspecific Lens hybrids by means of embryo culture. Plant Cell Tissue Organ Cult 3: 343–347

    Article  CAS  Google Scholar 

  • Dana S, Biswas MR (1975) Black gram x rice bean cross. Cytologia 40: 787–795

    Google Scholar 

  • FAO (1982) Fats and oils situation. FAO, Rome

    Google Scholar 

  • Gerstel DV, Phillips LL (1958) Segregation of synthetic amphiploids in Gossypium and Nicotiana. Cold Spring Harb Symp Quant Biol 13: 225–238

    Google Scholar 

  • Gill MS, Bajaj YPS (1984a) In vitro production of interspecific hybrids in cotton. Curr Sci 53: 102–103

    Google Scholar 

  • Gill MS, Bajaj YPS (1984b) Interspecific hybridization in the genus Gossypium through embryo culture. Euphytica 33: 305–311

    Article  Google Scholar 

  • Gill MS, Bajaj YPS (1986) In vitro production of interspecific hybrids in Gossypium and their utilization in backcrossing. Z Pflanzenzuecht 96: 174–176

    Google Scholar 

  • Gill MS, Bajaj YPS (1987) Hybridization between diploid (Gossypium arboreum) and tetraploid ( Gossypium hirsutum) cotton through ovule culture. Euphytica 36: 625–630

    Google Scholar 

  • Goodman RM, Hauptli H, Crossway A, Knauf CV (1987) Gene transfer in crop improvement. Science 236: 48–54

    Article  PubMed  CAS  Google Scholar 

  • Gosal SS, Bajaj YPS (1983 a) In vitro hybridization of an incompatible cross - black gram x green gram. Curr Sci 52:556–557

    Google Scholar 

  • Gosal SS, Bajaj YPS (1983 b) Interspecific hybridization between Vigna mungo and Vigna radiate through embryo culture. Euphytica 32: 129–137

    Google Scholar 

  • Grant WF, Bullen MR, de Nettancourt D (1962) The cytogenetics of Lotus. 1. Embryo-cultured interspecific diploid hybrids closely related to L. corniculatus L. Can J Genet Cytol 4: 105–128

    Google Scholar 

  • Hildebrand DF, Phillips GC, Collins GB (1986) Soybean [Glycine max (L.) Merr.]. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry 2. Crops I. Springer, Berlin Heidelberg New York Tokyo, pp 283–308

    Google Scholar 

  • Honma S (1956) A bean interspecific hybrid. J Hered 47: 217–220

    Google Scholar 

  • Hucl P, Scoles GJ (1985) Interspecific hybridization in the common bean: a review, Hortscience 20: 352–357

    Google Scholar 

  • Hutchinson JB, Silow RA, Stephens SG (1947) The evolution of Gossypium and the differentiation of the cultivated cottons. Oxford Univ Press, London, pp 160

    Google Scholar 

  • Inomata N (1979) Production of interspecific hybrids in Brassica campestris x B. oleracea by culture in vitro of excised ovaries. II. Development of excised ovaries on various media. Jpn J Breed 29: 115–120

    Google Scholar 

  • Iyengar NK, Santhanam V, Leela M (1957) Further studies in arboreum-anomalum crosses. Indian Cott Gr Rev 12: 369–375

    Google Scholar 

  • Johri BM, Bajaj YPS (1962) Behaviour of mature embryos of Dendrophthoe falcata (L.f.) Ettingh. in vitro. Nature (Lond) 193: 194–195

    Google Scholar 

  • Kalyanaraman SM, Santhanam V (1955) A note on the performance of some interspecific hybrids involving wild species of Gossypium L. arboreum-anomalum crosses. Indian Cott Gr Rev 11: 136–140

    Google Scholar 

  • Keim WF (1953) Interspecific hybridization in Trifolium using embryo culture techniques. Agron J 45: 601–606

    Article  Google Scholar 

  • Krapovickas A, Rigoni VA (1952) Estudios citologicos en el genero Arachis. Rev Invest Agric (Buenos Aires) 5: 289–294

    Google Scholar 

  • Kumar LS, Cruz RD, Oke JC (1957) A synthetic allohexaploid in Arachis. Curr Sci 26: 121–122

    Google Scholar 

  • Laibach F (1925) Das Taubwerden von Bastardsamen und die künstliche Aufzucht früh absterbenderc Bastardembryonen. Z Bot 17: 417–459

    Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation - a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60: 197–214

    Article  Google Scholar 

  • Matsuzawa Y (1978) Studies on interspecific hybridization in Brassica. 1. Effect of temperature on the development of hybrid embryos and improvement of the cross success rate by ovary culture in B. campestris x B. oleracea crosses. Jpn J Breed 28: 186–196

    Google Scholar 

  • McCoy TJ (1985) Interspecific hybridization of Medicago sativa L. and M. rupestris M.B. using ovule-embryo culture. Can J Genet Cytol 27: 238–245

    Google Scholar 

  • McHughen A, Rowland G (1988) Canada’s first somaclonal variant crop cultivar. 2nd Canadian Plant Tissue Culture Genet Eng Workshop, May-June 1988, Ottawa, 43 pp

    Google Scholar 

  • Mehboob Ali S, Krishnayya VV, Satyanarayana Murthy K (1964) A note on an interspecific hybrid in cotton (Gossypium arboreum race indicum x G. stocksii ). Indian Cott Gr Rev 18: 107–108

    Google Scholar 

  • Mohapatra D, Bajaj YPS (1984) In vitro hybridization in an incompatible cross - Brassica juncea x Brassica hirta. Curr Sci 53: 489–490

    Google Scholar 

  • Mohapatra D, Bajaj YPS (1987) Interspecific hybridization in Brassica juncea x Brassica hirta using embryo rescue. Euphytica 36: 321–326

    Article  Google Scholar 

  • Mohapatra D, Bajaj YPS (1988) Hybridization in Brassica juncea x Brassica campestris through ovary culture. Euphytica 37: 83–88

    Article  Google Scholar 

  • Mok DWS, Mok MC, Rabakoarihanta A (1978) Interspecific hybridization of Phaseolus vulgaris with P. lunatus and P. acutifolius. Theor Appl Genet 52: 209–215

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473–497

    Article  CAS  Google Scholar 

  • Newell CA, Hymowitz T (1982) Successful wide hybridization between the soybean and a wild perennial relative, Glycine tomentella Hayata. Crop Sci 22: 1062–1065

    Google Scholar 

  • Parpia HAB (1973) Utilization problems in food legumes. In: Nutritional improvement of food legumes by breeding. PAG, UN NY, pp 281–295

    Google Scholar 

  • Pecket RC, Selim ARAA (1965) Embryo culture in Lathyrus. J Exp Bot 16: 325–328

    Article  Google Scholar 

  • Pelletier C, Primand C, Vedel F, Chetrie P, Remy R, Rousselle P, Renard M (1983) Intergeneric cytoplasmic hybridization in Cruciferae by protoplast fusion. Mol Gen Genet 191: 244–250

    Article  CAS  Google Scholar 

  • Philipps GC, Collins GB, Taylor NL (1982) Interspecific hybridization of red clover (Trifolium pratense L.) with T. sarosiense Hazsl. using in vitro embryo rescue. Theor Appl Genet 62: 17–24

    Google Scholar 

  • Power CJ (1987) Organogenesis from Helianthus annuus inbreds and hybrids from the cotyledons of zygotic embryos. Am J Bot 74: 497–503

    Article  CAS  Google Scholar 

  • Prentice AN (1972) Cotton with special reference to Africa. Longmann, London, pp 68–76

    Google Scholar 

  • Pundir NS (1972) Experimental embryology of Gossypium arboreum and G. hirsutum and their reciprocal crosses. Bot Gaz 133: 7–26

    Article  Google Scholar 

  • Schell J St (1987) Transgenic plants as tools to study the molecular organization of plant genes. Science 128: 451–460

    Google Scholar 

  • Sen NK, Ghosh AK (1960) Interspecific hybridization between Phaseolus aureus and P. mungo. Bull Bot Soc Bengal 14: 1–4

    Google Scholar 

  • Silow RA (1941) The comparative genetics of Gossypium anomalum and the cultivated Asiatic cottons. J Genet 42: 259–358

    Article  Google Scholar 

  • Sinclair JB (ed) (1982) Compendium of soybean diseases. Am Phytopathol Soc, St Paul

    Google Scholar 

  • Singh AK, Moss JP (1982) Utilization of wild relatives in genetic improvement of Arachis hypogaea L. Part 2. Chromosome complements of species in section Arachis. Theor Appl Genet 61: 305–314

    Google Scholar 

  • Singh DP (1981) Breeding for resistance to disease in greengram and blackgram. Theor Appl Genet 59: 1–10

    Google Scholar 

  • Smartt J (1979) Interspecific hybridization in the grain legumes: A review. Econ Bot 33: 329–337

    Article  Google Scholar 

  • Smartt J, Gregory WG (1967) Interspecific cross-compatibility between the cultivated peanut Arachis hypogaea L. and other members of the genus Arachis. Oleagineux 22: 455–459

    Google Scholar 

  • Spielman IV, Burge AP, Moss JP (1979) Chromosome loss and meiotic behaviour in interspecific hybrids in the genus Arachis and their implications in breeding for disease resistance. Z Pflanzenzuecht 83: 236–250

    Google Scholar 

  • Stewart JM, Hsu CL (1978) Hybridization of diploid and tetraploid cottons through in-ovulo embryo culture. J Hered 69: 404–408

    Google Scholar 

  • Takeshita M, Kato M, Tokumasu S (1980) Application of ovule culture to the production of intergeneric hybrids in Brassica and Raphanus. Jpn J Genet 35: 373–387

    Article  Google Scholar 

  • Weaver JB Jr (1957) Embryological studies following interspecific crosses in Gossypium. I. G. hirsutum xG. arboreum. Am J Bot 44: 209–214

    Google Scholar 

  • Weaver JB Jr (1958) Embryological studies following interspecific crosses in Gossypium. II. G. arboreumxG. hirsutum. Am J Bot 45: 10–16

    Article  Google Scholar 

  • Webster GT (1955) Interspecific hybridization of Melilotus alba x M. officinalis using embryo culture. Agron J 47: 138–142

    Article  Google Scholar 

  • White PR (1943) The cultivation of animal and plant cells. Ronald, New York

    Google Scholar 

  • Williams EG (1980) Hybrids between Trifolium ambiguum and T. hybridum obtained with the aid of embryo culture. N Z J Bot 18: 215–220

    Google Scholar 

  • Williams EG, de Lantour G (1981) Production of tetraploid hybrids between Ornithopuspinnatus and O. sativus using embryo culture. N Z J Bot 19: 23–30

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bajaj, Y.P.S. (1990). Wide Hybridization in Legumes and Oilseed Crops Through Embryo, Ovule, and Ovary Culture. In: Bajaj, Y.P.S. (eds) Legumes and Oilseed Crops I. Biotechnology in Agriculture and Forestry, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74448-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74448-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74450-1

  • Online ISBN: 978-3-642-74448-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics