Sieve Elements pp 139-159 | Cite as


  • Eleftherios P. Eleftheriou


The application of electron microscopy in biological research has yielded a wealth of information on phloem structure and function, with special emphasis being placed on the main conducting unit, the sieve element. One of the most controversial issues of phloem investigation has been the nature of the mature sieve-plate pores: open or occluded? A clear understanding of sieve-element structure at successive stages of development is thus of fundamental importance if one is to elucidate the mechanism of translocation in the sieve tubes. Considerable effort has been devoted during the last two decades to advancing our knowledge on the structure and function of the monocotyledons phloem. Although monocotyledons constitute a broad taxonomic group within the plant kingdom, including species wellknown through the centuries for their importance as food sources or as excellent pasture crops, they have been considerably less investigated in respect to phloem structure than the dicotyledons. From the evolutionary point of view, the monocotyledons are monophyletic on the basis of two character conditions: (1) they have a single cotyledon, whereas the dicotyledons have two; (2) their sieve tube plastids accumulate proteins in the form of triangular or cuneate bodies (Dahlgren et al. 1985). This chapter is therefore aimed at familiarizing the reader with the most salient structural features of sieve elements in monocotyledons and at comparing them with the corresponding structures of other groups, especially the dicotyledons.


Sieve Tube Sieve Element Sieve Plate Nuclear Degeneration Phloem Sieve Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Behnke H-D (1968) Zum Aufbau gitterartiger Membranstrukturen im Siebelementplasma von Dioscorea. Protoplasma 66: 287–310.CrossRefGoogle Scholar
  2. Behnke H-D (1969a) Aspekte der Siebröhren-Differenzierung bei Monocotylen. Protoplasma 68:289–314.CrossRefGoogle Scholar
  3. Behnke H-D (1969b) Die Siebröhren-Plastiden der Monocotyledonen. Vergleichende Untersuchungen über Feinbau und Verbreitung eines charakteristischen Piastidentyps. Planta 84:174–184.CrossRefGoogle Scholar
  4. Behnke H-D (1969c) Über den Feinbau und die Ausbreitung der Siebröhren-Plasmafilamente und über Bau und Differenzierung der Siebporen bei einigen Monocotylen und bei Nuphar. Protoplasma 68: 377–402.CrossRefGoogle Scholar
  5. Behnke H-D (1972) Sieve-tube plastids in relation to angiosperm systematics. An attempt towards a classification by ultrastructural analysis. Bot Rev 38:155–197.CrossRefGoogle Scholar
  6. Behnke H-D (1973) Strukturänderungen des Endoplasmatischen Reticulums und Auftreten von Proteinfilamenten während der Siebröhrendifferenzierung bei Smilax excelsa. Protoplasma 77: 279–289.CrossRefGoogle Scholar
  7. Behnke H-D (1975) P-type sieve-element plastids: a correlative ultrastructural and ultrahisto-chemical study on the diversity and uniformity of a new reliable character in seed plant systematics. Protoplasma 83: 91–101.CrossRefGoogle Scholar
  8. Behnke H-D (1981a) Sieve-element characters. Nord J Bot 1: 381–400.CrossRefGoogle Scholar
  9. Behnke H-D (1981b) Siebelement-Plastiden, Phloem-Protein und Evolution der Blütenpflanzen: II. Monokotyledonen. Ber Dtsch Bot Ges 94: 647–662.Google Scholar
  10. Behnke H-D, Dörr I (1967) Zur Herkunft und Struktur der Plasmafilamente in Assimilatleit-bahnen. Planta 74:18–44.CrossRefGoogle Scholar
  11. Cartwright SC, Lush WM, Canny MJ (1977) A comparison of translocation of labelled assimilate by normal and lignified sieve elements in wheat leaves. Planta 134: 207–208.CrossRefGoogle Scholar
  12. Cronshaw J (1981) Phloem structure and function. Annu Rev Plant Physiol 32: 465–484.CrossRefGoogle Scholar
  13. Dahlgren RMT, Clifford HT, Yeo PF (1985) The families of monocotyledons. Structure, evolution and taxonomy. Springer, Berlin Heidelberg New York Tokyo.CrossRefGoogle Scholar
  14. Danilova MF, Telepova MN (1978) Differentiation of protophloem sieve elements in seedling roots of Hordeum vulgare. Phytomorphology 28: 418–431.Google Scholar
  15. Danilova MF, Telepova MN (1980) Distinctive features of differentiation in proto— and metaphloem sieve elements of barley root. Phytomorphology 30: 380–387 [issued 1982].Google Scholar
  16. Eleftheriou EP (1981) A light and electron microscopy study on phloem differentiation of the grass Aegilops comosa var. thessalica. Thesis, Univ Thessaloniki (in Greek with English summary).Google Scholar
  17. Eleftheriou EP (1984) Sieve-element plastids of Triticum and Aegilops (Poaceae). Plant Syst Evol 145:119–133.CrossRefGoogle Scholar
  18. Eleftheriou EP (1985) Microtubules and root protophloem ontogeny in wheat. J Cell Sci 75:165–179.PubMedGoogle Scholar
  19. Eleftheriou EP (1986) Ultrastructural studies on protophloem sieve elements in Triticum aestivum L. Nuclear degeneration. J Ultrastruct Mol Struct Res 95: 47–60.CrossRefGoogle Scholar
  20. Eleftheriou EP (1987a) Microtubules and cell wall development in differentiating protophloem sieve elements of Triticum aestivum L. J Cell Sci 87: 595–607.Google Scholar
  21. Eleftheriou EP (1987b) Changes in the endoplasmic reticulum during sieve element differentiation in Triticum aestivum. Ann Bot (London) 60: 713–721.Google Scholar
  22. Eleftheriou EP, Tsekos I (1982a) The ultrastructure of protophloem sieve elements in leaves of Aegilops comosa var. thessalica. Ann Bot (London) 49: 557–567.Google Scholar
  23. Eleftheriou EP, Tsekos I (1982b) Developmental features of cell wall formation in sieve elements of the grass Aegilops comosa var. thessalica. Ann Bot (London) 50: 519–529.Google Scholar
  24. Eleftheriou EP, Tsekos I (1982c) Development of protophloem in roots of Aegilops comosa var. thessalica. I. Differential divisions and pre-prophase bands of microtubules. Protoplasma 113:110–119.CrossRefGoogle Scholar
  25. Eleftheriou EP, Tsekos I (1982d) Development of protophloem in roots of Aegilops comosa var. thessalica. II. Sieve-element differentiation. Protoplasma 113: 221–233.CrossRefGoogle Scholar
  26. Ervin EL, Evert RF (1970) Observations on sieve elements in three perennial monocotyledons. Am J Bot 57: 218–224.CrossRefGoogle Scholar
  27. Esau K (1978) The protein inclusions in sieve elements of cotton (Gossypium hirsutum L.). J Ultrastruct Res 63: 224–235.PubMedCrossRefGoogle Scholar
  28. Esau K, Gill RH (1971) Aggregation of endoplasmic reticulum and its relation to the nucleus in a differentiating sieve element. J Ultrastruct Res 34:144–158.PubMedCrossRefGoogle Scholar
  29. Esau K, Gill RH (1973) Correlations in differentiation of protophloem sieve elements of Allium cepa root. J Ultrastruct Res 44: 310–328.PubMedCrossRefGoogle Scholar
  30. Eschrich W (1975) Sealing systems in phloem. In: Zimmermann MH, Milburn JA (eds) Transport in plants I. Phloem transport. Encyclopedia of plant physiology, NS. vol 1. Springer, Berlin Heidelberg New York, pp 39–56.Google Scholar
  31. Evert RF (1977) Phloem structure and histochemistry. Annu Rev Plant Physiol 28: 199–222.CrossRefGoogle Scholar
  32. Evert RF (1980) Vascular anatomy of angiospermous leaves, with special consideration of the maize leaf. Ber Dtsch Bot Ges 93: 43–55.Google Scholar
  33. Evert RF, Eschrich W, Eichhorn SE (1971) Sieve-plate pores in leaf veins of Hordeum vulgare. Planta 100: 262–267.CrossRefGoogle Scholar
  34. Evert RF, Eschrich W, Heyser W (1978) Leaf structure in relation to solute transport and phloem loading in Zea mays L. Planta 138: 279–294.CrossRefGoogle Scholar
  35. Fjell I (1987a) Ultrastructural features of differentiating protophloem sieve elements in adventitious roots of Salix viminalis. Nord J Bot 7: 135–151.CrossRefGoogle Scholar
  36. Fjell I (1987b) P-protein and inclusion bodies in root protophloem of Salix viminalis. Nord J Bot 7: 305–310.CrossRefGoogle Scholar
  37. Heyser W (1971) Phloemdifferenzierung bei Tradescantia albiflora. Cytobiology 4:186–197.Google Scholar
  38. Hoefert LL (1980) Ultrastructure of developing sieve elements in Thlaspi arvense L. II. Maturation. Am J Bot 67: 194–201.CrossRefGoogle Scholar
  39. Kawahara H, Matsuda T, Chonan N (1980) Studies on morphogenesis in rice plant. XII. Ultrastructure of the phloem in the crown root. Jpn J Crop Sci 49: 330–339 (in Japanese with English summary).CrossRefGoogle Scholar
  40. Kawata S, Monta S, Yamazaki K (1978) On the differentiation of vessels and sieve tubes at the root tips of rice plants. Jpn J Crop Sci 47:101–110 (in Japanese with English summary).Google Scholar
  41. Kuo J (1983a) Notes on the biology of Australian seagrasses. Proc Linn Soc N S W 106:225–245.Google Scholar
  42. Kuo J (1983b) The nacreous walls of sieve elements in seagrasses. Am J Bot 70: 159–164.CrossRefGoogle Scholar
  43. Kuo J, O’Brien TP (1974) Lignified sieve elements in the wheat leaf. Planta 117: 349–353.CrossRefGoogle Scholar
  44. Kuo J, O’Brien TP, Zee S-Y (1972) The transverse veins of the wheat leaf. Aust J Biol Sci 25:721–737.Google Scholar
  45. Melaragno JE, Walsh MA (1976) Ultrastructural features of developing sieve elements in Lemna minor L. The protoplast. Am J Bot 63:1145–1157.CrossRefGoogle Scholar
  46. Miyake H, Maeda E (1976) Development of bundle sheath chloroplasts in rice seedlings. Can J Bot 54:556–565.CrossRefGoogle Scholar
  47. Neuberger DS, Evert RF (1975) Structure and development of sieve areas in the hypocotyl of Pinus resinosa. Protoplasma 84:109–125.CrossRefGoogle Scholar
  48. Oparka KJ, Johnson RPC (1978) Endoplasmic reticulum and crystalline fibrils in the root protophloem of Nymphoides peltata. Planta 143: 21–27.CrossRefGoogle Scholar
  49. Parthasarathy MV (1974a) Ultrastructure of phloem in palms. I. Immature sieve elements and parenchymatic elements. Protoplasma 79: 59–91.CrossRefGoogle Scholar
  50. Parthasarathy MV (1974b) Ultrastructure of phloem in palms. II. Structural changes, and fate of the organelles in differentiating sieve elements. Protoplasma 79: 93–125.CrossRefGoogle Scholar
  51. Parthasarathy MV (1974c) Ultrastructure of phloem in palms. III. Mature phloem. Protoplasma 79: 265–315.CrossRefGoogle Scholar
  52. Parthasarathy MV (1980) Mature phloem of perennial monocotyledons. Ber Dtsch Bot Ges 93:57–70.Google Scholar
  53. Psaras GK (1980) On the development of the vascular bundles of Zea mays. Thesis, Univ Athens (in Greek with English summary).Google Scholar
  54. Singh AP (1980) On the ultrastructure and differentiation of the phloem in sugarcane leaves. Cytologia 45:1–31.CrossRefGoogle Scholar
  55. Singh AP, Srivastava LM (1972) The fine structure of corn phloem. Can J Bot 50: 839–846.CrossRefGoogle Scholar
  56. Thorseh J, Esau K (1981a) Changes in the endoplasmic reticulum during differentiation of a sieve element in Gossypium hirsutum. J Ultrastruct Res 74:183–194.CrossRefGoogle Scholar
  57. Thorsch J, Esau K (1981b) Nuclear degeneration and the association of endoplasmic reticulum with the nuclear envelope and microtubules in maturing sieve elements of Gossypium hirsutum. J Ultrastruct Res 74:195–204.PubMedCrossRefGoogle Scholar
  58. Thorsch J, Esau K (1981c) Ultrastructural studies of protophloem sieve elements in Gossypium hirsutum. J Ultrastruct Res 75: 339–351.PubMedCrossRefGoogle Scholar
  59. Walsh MA (1974) Late-formed metaphloem sieve-elements in Zea mays L. Planta 121:17–25.CrossRefGoogle Scholar
  60. Walsh MA (1980) Preservation of the tonoplast in metaphloem sieve elements of embryonic roots of Zea mays L. Ann Bot (London) 46: 557–565.Google Scholar
  61. Walsh MA, Evert RF (1975) Ultrastructure of metaphloem sieve elements in Zea mays. Protoplasma 83: 365–388.CrossRefGoogle Scholar
  62. Walsh MA, Melaragno JE (1976) Ultrastructural features of developing sieve elements in Lemna minor L. Sieve plate and lateral sieve areas. Am J Bot 63: 1174–1183.CrossRefGoogle Scholar
  63. Walsh MA, Melaragno JE (1981) Structural evidence for plastid inclusions as a possible “sealing” mechanism in the phloem of monocotyledons. J Exp Bot 32: 311–320.CrossRefGoogle Scholar
  64. Worley JF (1973) Evidence in support of “open” sieve tube pores. Protoplasma 76:129–132.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Eleftherios P. Eleftheriou

There are no affiliations available

Personalised recommendations