Skip to main content

Monocotyledons

  • Chapter
Sieve Elements

Abstract

The application of electron microscopy in biological research has yielded a wealth of information on phloem structure and function, with special emphasis being placed on the main conducting unit, the sieve element. One of the most controversial issues of phloem investigation has been the nature of the mature sieve-plate pores: open or occluded? A clear understanding of sieve-element structure at successive stages of development is thus of fundamental importance if one is to elucidate the mechanism of translocation in the sieve tubes. Considerable effort has been devoted during the last two decades to advancing our knowledge on the structure and function of the monocotyledons phloem. Although monocotyledons constitute a broad taxonomic group within the plant kingdom, including species wellknown through the centuries for their importance as food sources or as excellent pasture crops, they have been considerably less investigated in respect to phloem structure than the dicotyledons. From the evolutionary point of view, the monocotyledons are monophyletic on the basis of two character conditions: (1) they have a single cotyledon, whereas the dicotyledons have two; (2) their sieve tube plastids accumulate proteins in the form of triangular or cuneate bodies (Dahlgren et al. 1985). This chapter is therefore aimed at familiarizing the reader with the most salient structural features of sieve elements in monocotyledons and at comparing them with the corresponding structures of other groups, especially the dicotyledons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Behnke H-D (1968) Zum Aufbau gitterartiger Membranstrukturen im Siebelementplasma von Dioscorea. Protoplasma 66: 287–310.

    Article  Google Scholar 

  • Behnke H-D (1969a) Aspekte der Siebröhren-Differenzierung bei Monocotylen. Protoplasma 68:289–314.

    Article  Google Scholar 

  • Behnke H-D (1969b) Die Siebröhren-Plastiden der Monocotyledonen. Vergleichende Untersuchungen über Feinbau und Verbreitung eines charakteristischen Piastidentyps. Planta 84:174–184.

    Article  Google Scholar 

  • Behnke H-D (1969c) Über den Feinbau und die Ausbreitung der Siebröhren-Plasmafilamente und über Bau und Differenzierung der Siebporen bei einigen Monocotylen und bei Nuphar. Protoplasma 68: 377–402.

    Article  Google Scholar 

  • Behnke H-D (1972) Sieve-tube plastids in relation to angiosperm systematics. An attempt towards a classification by ultrastructural analysis. Bot Rev 38:155–197.

    Article  Google Scholar 

  • Behnke H-D (1973) Strukturänderungen des Endoplasmatischen Reticulums und Auftreten von Proteinfilamenten während der Siebröhrendifferenzierung bei Smilax excelsa. Protoplasma 77: 279–289.

    Article  Google Scholar 

  • Behnke H-D (1975) P-type sieve-element plastids: a correlative ultrastructural and ultrahisto-chemical study on the diversity and uniformity of a new reliable character in seed plant systematics. Protoplasma 83: 91–101.

    Article  Google Scholar 

  • Behnke H-D (1981a) Sieve-element characters. Nord J Bot 1: 381–400.

    Article  Google Scholar 

  • Behnke H-D (1981b) Siebelement-Plastiden, Phloem-Protein und Evolution der Blütenpflanzen: II. Monokotyledonen. Ber Dtsch Bot Ges 94: 647–662.

    Google Scholar 

  • Behnke H-D, Dörr I (1967) Zur Herkunft und Struktur der Plasmafilamente in Assimilatleit-bahnen. Planta 74:18–44.

    Article  Google Scholar 

  • Cartwright SC, Lush WM, Canny MJ (1977) A comparison of translocation of labelled assimilate by normal and lignified sieve elements in wheat leaves. Planta 134: 207–208.

    Article  CAS  Google Scholar 

  • Cronshaw J (1981) Phloem structure and function. Annu Rev Plant Physiol 32: 465–484.

    Article  CAS  Google Scholar 

  • Dahlgren RMT, Clifford HT, Yeo PF (1985) The families of monocotyledons. Structure, evolution and taxonomy. Springer, Berlin Heidelberg New York Tokyo.

    Book  Google Scholar 

  • Danilova MF, Telepova MN (1978) Differentiation of protophloem sieve elements in seedling roots of Hordeum vulgare. Phytomorphology 28: 418–431.

    Google Scholar 

  • Danilova MF, Telepova MN (1980) Distinctive features of differentiation in proto— and metaphloem sieve elements of barley root. Phytomorphology 30: 380–387 [issued 1982].

    Google Scholar 

  • Eleftheriou EP (1981) A light and electron microscopy study on phloem differentiation of the grass Aegilops comosa var. thessalica. Thesis, Univ Thessaloniki (in Greek with English summary).

    Google Scholar 

  • Eleftheriou EP (1984) Sieve-element plastids of Triticum and Aegilops (Poaceae). Plant Syst Evol 145:119–133.

    Article  Google Scholar 

  • Eleftheriou EP (1985) Microtubules and root protophloem ontogeny in wheat. J Cell Sci 75:165–179.

    PubMed  CAS  Google Scholar 

  • Eleftheriou EP (1986) Ultrastructural studies on protophloem sieve elements in Triticum aestivum L. Nuclear degeneration. J Ultrastruct Mol Struct Res 95: 47–60.

    Article  Google Scholar 

  • Eleftheriou EP (1987a) Microtubules and cell wall development in differentiating protophloem sieve elements of Triticum aestivum L. J Cell Sci 87: 595–607.

    Google Scholar 

  • Eleftheriou EP (1987b) Changes in the endoplasmic reticulum during sieve element differentiation in Triticum aestivum. Ann Bot (London) 60: 713–721.

    Google Scholar 

  • Eleftheriou EP, Tsekos I (1982a) The ultrastructure of protophloem sieve elements in leaves of Aegilops comosa var. thessalica. Ann Bot (London) 49: 557–567.

    Google Scholar 

  • Eleftheriou EP, Tsekos I (1982b) Developmental features of cell wall formation in sieve elements of the grass Aegilops comosa var. thessalica. Ann Bot (London) 50: 519–529.

    Google Scholar 

  • Eleftheriou EP, Tsekos I (1982c) Development of protophloem in roots of Aegilops comosa var. thessalica. I. Differential divisions and pre-prophase bands of microtubules. Protoplasma 113:110–119.

    Article  Google Scholar 

  • Eleftheriou EP, Tsekos I (1982d) Development of protophloem in roots of Aegilops comosa var. thessalica. II. Sieve-element differentiation. Protoplasma 113: 221–233.

    Article  Google Scholar 

  • Ervin EL, Evert RF (1970) Observations on sieve elements in three perennial monocotyledons. Am J Bot 57: 218–224.

    Article  Google Scholar 

  • Esau K (1978) The protein inclusions in sieve elements of cotton (Gossypium hirsutum L.). J Ultrastruct Res 63: 224–235.

    Article  PubMed  CAS  Google Scholar 

  • Esau K, Gill RH (1971) Aggregation of endoplasmic reticulum and its relation to the nucleus in a differentiating sieve element. J Ultrastruct Res 34:144–158.

    Article  PubMed  CAS  Google Scholar 

  • Esau K, Gill RH (1973) Correlations in differentiation of protophloem sieve elements of Allium cepa root. J Ultrastruct Res 44: 310–328.

    Article  PubMed  CAS  Google Scholar 

  • Eschrich W (1975) Sealing systems in phloem. In: Zimmermann MH, Milburn JA (eds) Transport in plants I. Phloem transport. Encyclopedia of plant physiology, NS. vol 1. Springer, Berlin Heidelberg New York, pp 39–56.

    Google Scholar 

  • Evert RF (1977) Phloem structure and histochemistry. Annu Rev Plant Physiol 28: 199–222.

    Article  CAS  Google Scholar 

  • Evert RF (1980) Vascular anatomy of angiospermous leaves, with special consideration of the maize leaf. Ber Dtsch Bot Ges 93: 43–55.

    Google Scholar 

  • Evert RF, Eschrich W, Eichhorn SE (1971) Sieve-plate pores in leaf veins of Hordeum vulgare. Planta 100: 262–267.

    Article  Google Scholar 

  • Evert RF, Eschrich W, Heyser W (1978) Leaf structure in relation to solute transport and phloem loading in Zea mays L. Planta 138: 279–294.

    Article  Google Scholar 

  • Fjell I (1987a) Ultrastructural features of differentiating protophloem sieve elements in adventitious roots of Salix viminalis. Nord J Bot 7: 135–151.

    Article  Google Scholar 

  • Fjell I (1987b) P-protein and inclusion bodies in root protophloem of Salix viminalis. Nord J Bot 7: 305–310.

    Article  CAS  Google Scholar 

  • Heyser W (1971) Phloemdifferenzierung bei Tradescantia albiflora. Cytobiology 4:186–197.

    Google Scholar 

  • Hoefert LL (1980) Ultrastructure of developing sieve elements in Thlaspi arvense L. II. Maturation. Am J Bot 67: 194–201.

    Article  Google Scholar 

  • Kawahara H, Matsuda T, Chonan N (1980) Studies on morphogenesis in rice plant. XII. Ultrastructure of the phloem in the crown root. Jpn J Crop Sci 49: 330–339 (in Japanese with English summary).

    Article  Google Scholar 

  • Kawata S, Monta S, Yamazaki K (1978) On the differentiation of vessels and sieve tubes at the root tips of rice plants. Jpn J Crop Sci 47:101–110 (in Japanese with English summary).

    Google Scholar 

  • Kuo J (1983a) Notes on the biology of Australian seagrasses. Proc Linn Soc N S W 106:225–245.

    Google Scholar 

  • Kuo J (1983b) The nacreous walls of sieve elements in seagrasses. Am J Bot 70: 159–164.

    Article  Google Scholar 

  • Kuo J, O’Brien TP (1974) Lignified sieve elements in the wheat leaf. Planta 117: 349–353.

    Article  Google Scholar 

  • Kuo J, O’Brien TP, Zee S-Y (1972) The transverse veins of the wheat leaf. Aust J Biol Sci 25:721–737.

    CAS  Google Scholar 

  • Melaragno JE, Walsh MA (1976) Ultrastructural features of developing sieve elements in Lemna minor L. The protoplast. Am J Bot 63:1145–1157.

    Article  Google Scholar 

  • Miyake H, Maeda E (1976) Development of bundle sheath chloroplasts in rice seedlings. Can J Bot 54:556–565.

    Article  Google Scholar 

  • Neuberger DS, Evert RF (1975) Structure and development of sieve areas in the hypocotyl of Pinus resinosa. Protoplasma 84:109–125.

    Article  Google Scholar 

  • Oparka KJ, Johnson RPC (1978) Endoplasmic reticulum and crystalline fibrils in the root protophloem of Nymphoides peltata. Planta 143: 21–27.

    Article  Google Scholar 

  • Parthasarathy MV (1974a) Ultrastructure of phloem in palms. I. Immature sieve elements and parenchymatic elements. Protoplasma 79: 59–91.

    Article  Google Scholar 

  • Parthasarathy MV (1974b) Ultrastructure of phloem in palms. II. Structural changes, and fate of the organelles in differentiating sieve elements. Protoplasma 79: 93–125.

    Article  Google Scholar 

  • Parthasarathy MV (1974c) Ultrastructure of phloem in palms. III. Mature phloem. Protoplasma 79: 265–315.

    Article  Google Scholar 

  • Parthasarathy MV (1980) Mature phloem of perennial monocotyledons. Ber Dtsch Bot Ges 93:57–70.

    Google Scholar 

  • Psaras GK (1980) On the development of the vascular bundles of Zea mays. Thesis, Univ Athens (in Greek with English summary).

    Google Scholar 

  • Singh AP (1980) On the ultrastructure and differentiation of the phloem in sugarcane leaves. Cytologia 45:1–31.

    Article  Google Scholar 

  • Singh AP, Srivastava LM (1972) The fine structure of corn phloem. Can J Bot 50: 839–846.

    Article  Google Scholar 

  • Thorseh J, Esau K (1981a) Changes in the endoplasmic reticulum during differentiation of a sieve element in Gossypium hirsutum. J Ultrastruct Res 74:183–194.

    Article  Google Scholar 

  • Thorsch J, Esau K (1981b) Nuclear degeneration and the association of endoplasmic reticulum with the nuclear envelope and microtubules in maturing sieve elements of Gossypium hirsutum. J Ultrastruct Res 74:195–204.

    Article  PubMed  CAS  Google Scholar 

  • Thorsch J, Esau K (1981c) Ultrastructural studies of protophloem sieve elements in Gossypium hirsutum. J Ultrastruct Res 75: 339–351.

    Article  PubMed  CAS  Google Scholar 

  • Walsh MA (1974) Late-formed metaphloem sieve-elements in Zea mays L. Planta 121:17–25.

    Article  Google Scholar 

  • Walsh MA (1980) Preservation of the tonoplast in metaphloem sieve elements of embryonic roots of Zea mays L. Ann Bot (London) 46: 557–565.

    Google Scholar 

  • Walsh MA, Evert RF (1975) Ultrastructure of metaphloem sieve elements in Zea mays. Protoplasma 83: 365–388.

    Article  Google Scholar 

  • Walsh MA, Melaragno JE (1976) Ultrastructural features of developing sieve elements in Lemna minor L. Sieve plate and lateral sieve areas. Am J Bot 63: 1174–1183.

    Article  Google Scholar 

  • Walsh MA, Melaragno JE (1981) Structural evidence for plastid inclusions as a possible “sealing” mechanism in the phloem of monocotyledons. J Exp Bot 32: 311–320.

    Article  Google Scholar 

  • Worley JF (1973) Evidence in support of “open” sieve tube pores. Protoplasma 76:129–132.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eleftheriou, E.P. (1990). Monocotyledons. In: Behnke, HD., Sjolund, R.D. (eds) Sieve Elements. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74445-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74445-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74447-1

  • Online ISBN: 978-3-642-74445-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics