The Coniferophytina represent a very successful subdivision of the plant kingdom. While most of its families are spread over the entire northern hemisphere and often establish extremely large populations, some also occur in the southern hemisphere. Moreover, since the conifers include individuals of the bristlecone pine (Pinus longaeva) from the Californian White Mountains which are almost 5000 years old (according to tree-ring counts, cf. Ferguson 1968) and the giant Californian Redwood trees (Sequoia sempervirens) — which measure more than 110 m in height and over 11 m in diameter — this group also holds the longevity and size records among seed plants. Rapid growth and high yield are other factors specifically attributed to them which have led to the preference of the conifer softwood in commercial wood production.


Endoplasmic Reticulum Secondary Wall Sieve Element Secondary Phloem Sieve Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alfieri FJ, Evert RF (1968a) Observations on albuminous cells in Pinus. Planta 78: 93–97.CrossRefGoogle Scholar
  2. Alfieri FJ, Evert RF (1968b) Seasonal development of the secondary phloem in Pinus. Am J Bot 55: 518–528.CrossRefGoogle Scholar
  3. Alosi MC, Park RB (1983) Fractionation and polypeptide analysis of phloem tissue of Pinus sabiniana Dougl. Planta 157: 298–306.CrossRefGoogle Scholar
  4. Barnett JR (1974) Secondary phloem in Pinus radiata D. Don. I. Structure of differentiating sieve cells. N Z J Bot 12: 245–260.Google Scholar
  5. Behnke H-D (1974) Sieve-element plastids of gymnospermae: their ultrastructure in relation to systematics. Plant Syst Evol 123:1–12.CrossRefGoogle Scholar
  6. Behnke H-D (1983) Cytology and morphogenesis of higher plant cells — phloem. In: Ellenberg H, Esser K, Kubitzki K, Schnepf E, Ziegler H (eds) Progress in botany, vol 45. Springer, Berlin Heidelberg, pp 18–35.Google Scholar
  7. Behnke H-D (1986) Sieve element characters and the systematic position of Austrobaileya, Austrobaileyaceae — with comments to the distinction and definition of sieve cells and sieve-tube members. Plant Syst Evol 152:101–121.CrossRefGoogle Scholar
  8. Behnke H-D, Paliwal GS (1973) Ultrastructure of phloem and its development in Gnetum gnemon, with some observations on Ephedra campylopoda. Protoplasma 78: 305–319.CrossRefGoogle Scholar
  9. Carde J-P (1973) Le tissu de transfert (=cellules de Strasburger) dans les aiguilles du Pin maritime (Pinus pinaster Ait.) I. Etude histologique et infrastructurale du tissu adulte. J Microsc 17: 65–88.Google Scholar
  10. Carde J-P (1974) Le tissu de transfert (=cellules de Strasburger) dans les aiguilles du Pin maritime (Pinus pinaster Ait) II. Caractères cytochimiques et infrastructuraux de la paroi et des plasmodesmes. J Microsc 20: 51–72.Google Scholar
  11. Chauveaud G (1902a) De l’existence d’éléments précurseurs des tubes criblés chez les Gymnospermes. C R Acad Sci 134:1605–1606.Google Scholar
  12. Chauveaud G (1902b) Développement des éléments précurseurs des tubes criblés dans le Thuja orientalis. Bull Mus Hist Nat 8: 447–454.Google Scholar
  13. Chauveaud G (1903) Recherches sur le mode de formation des tubes criblés dans la racine des Cryptogames vasculaires et des Gymnospermes. Ann Sci Nat Bot 18:165–277.Google Scholar
  14. Dute RR (1983) Features of sieve-element ontogeny in Ginkgo biloba. Am J Bot 70 (5,2): 19.CrossRefGoogle Scholar
  15. Esau K (1969) The phloem. In: Zimmermann W, Ozenda P, Wulff HD (eds) Encyclopedia of plant anatomy, vol 5, pt 2. Borntraeger, Berlin Stuttgart, 505 pp.Google Scholar
  16. Evert RF (1984) Comparative structure of phloem. In: White RA, Dickison WC (eds) Contemporary problems in plant anatomy. Academic Press, New York London, pp 145–234.Google Scholar
  17. Evert RF, Davis JD, Tucker CM, Alfieri FJ (1970) On the occurrence of nuclei in mature sieve elements. Planta 95: 281–296.CrossRefGoogle Scholar
  18. Ferguson (1968) Bristlecone pine: science and esthetics. Science 159: 839–846.PubMedCrossRefGoogle Scholar
  19. Gourret J-P, Strullu D-G (1974) Evolution des protéoplastes du phloème de Pseudotsuga menziesii Mirb. (Abietacées) au cours de la différenciation des éléments criblés. J Microsc 20:73–82.Google Scholar
  20. Harris WM (1972) Ultrastructural observations in Pinaceae leaf phloem I. The spring condition. New Phytol 71: 169–173.CrossRefGoogle Scholar
  21. Hébant C (1975) Lack of incorporation of tritiated uridine by nuclei of mature sieve elements in Metasequoia glyptostroboides and Sequoiadendron giganteum. Planta 126: 161–163.CrossRefGoogle Scholar
  22. Kollmann R, Schumacher W (1961) Über die Feinstruktur des Phloems von Metasequoia glyptostroboides und seine jahreszeitlichen Veränderungen, I. Mitteilung: Das Ruhephloem. Planta 57: 583–607.CrossRefGoogle Scholar
  23. Kollmann R, Schumacher W (1962a) Über die Feinstruktur des Phloems von Metasequoia glyptostroboides und seine jahreszeitlichen Veränderungen, II. Mitteilung: Vergleichende Untersuchungen der plasmatischen Verbindungsbrücken in Phloemparenchymzellen und Siebzellen. Planta 58: 366–386.CrossRefGoogle Scholar
  24. Kollmann R, Schumacher W (1962b) Über die Feinstruktur des Phloems von Metasequoia glyptostroboides und seine jahreszeitlichen Veränderungen, III. Mitteilung: Die Reaktivierung der Phloemzellen im Frühjahr. Planta 59: 195–221.CrossRefGoogle Scholar
  25. Kollmann R, Schumacher W (1963) Über die Feinstruktur des Phloems von Metasequoia glyptostroboides und seine jahreszeitlichen Veränderungen, IV. Mitteilung: Weitere Beobachtungen zum Feinbau der Plasmabrücken in den Siebzellen. Planta 60: 360–389.CrossRefGoogle Scholar
  26. Kollmann R, Schumacher W (1964) Über die Feinstruktur des Phloems von Metasequoia glyptostroboides und seine jahreszeitlichen Veränderungen, V. Mitteilung: Die Differenzierung der Siebzellen in Verlaufe einer Vegetationsperiode. Planta 63:155–190.CrossRefGoogle Scholar
  27. Murmanis L (1974) Filamentous component of secondary phloem sieve elements in Pinus strobus L. Ann Bot (London) 38: 859–863.Google Scholar
  28. Murmanis L, Evert RF (1966) Some aspects of sieve cell ultrastructure in Pinus strobus. Am J Bot 53:1065–1078.CrossRefGoogle Scholar
  29. Neuberger DS, Evert RF (1974) Structure and development of the sieve element protoplast in the hypocotyl of Pinus resinosa. Am J Bot 61: 360–374.CrossRefGoogle Scholar
  30. Neuberger DS, Evert RF (1975) Structure and development of sieve areas in the hypocotyl of Pinus resinosa. Protoplasma 84:109–125.CrossRefGoogle Scholar
  31. Neuberger DS, Evert RF (1976) Structure and development of sieve cells in the primary phloem of Pinus resinosa. Protoplasma 87: 27–31.CrossRefGoogle Scholar
  32. Parameswaran N (1971) Zur Feinstruktur der Assimilatleitbahnen in der Nadel von Pinus silvestris. Cytobiologie 3: 70–88.Google Scholar
  33. Parthasarathy MV, Pesacreta TC (1980) Microfilaments in plant vascular cells. Can J Bot 58:807–815.CrossRefGoogle Scholar
  34. Pesacreta TC, Parthasarathy MV (1984) Microfilament bundles in the roots of a conifer, Chamaecyparis obtusa. Protoplasma 121: 54–64.CrossRefGoogle Scholar
  35. Salmon J (1946) Différenciation des tubes criblés chez les Angiospermes: Recherches cytologiques. Rev Cytol Cytophysiol Veget 9: 55–168.Google Scholar
  36. Sauter JJ (1974) Structure and physiology of Strasburger cells. Ber Dtsch Bot Ges 87: 327–336.Google Scholar
  37. Sauter JJ, Dörr I, Kollmann R (1976) The ultrastructure of Strasburger cells ( =albuminous cells) in the secondary phloem of Pinus nigra var.austriaca (Hoess) Badoux. Protoplasma 88:31–49.CrossRefGoogle Scholar
  38. Schulz A (1987) Sieve-element differentiation and fluoresceine translocation in wound-phloem of pea roots after complete severance of the stele. Planta 170: 289–299.CrossRefGoogle Scholar
  39. Schulz A (1988) Vascular differentiation in the root cortex of peas: premitotic stages of cytoplasmic reactivation. Protoplasma 143: 176–187.CrossRefGoogle Scholar
  40. Schulz A, Behnke H-D (1987) Feinbau und Differenzierung des Phloems von Buchen, Fichten und Tannen aus Waldschadensgebieten. PEF-Ber 16, Kernforschungszentrum Karlsruhe, 95 pp.Google Scholar
  41. Schulz A, Alosi AC, Sabnis DD, Park RB (1989) A phloem-specific, lectin-like protein is located in pine sieve-element plastids by immunocytochemistry. Planta 179: 506–515.CrossRefGoogle Scholar
  42. Singh AP (1984a) Pinus radiata needle trace studies: fine structure of immature sieve cells in the primary phloem. Cytologia 49: 359–384.CrossRefGoogle Scholar
  43. Singh AP (1984b) Microfilaments in the phloem of Pinus radiata cotyledons. Cytologia 49:385–393.CrossRefGoogle Scholar
  44. Smoot EL (1984) Phloem anatomy of the carboniferous pteridosperm Medullosa and evolutionary trends in gymnosperm phloem. Bot Gaz 145: 550–564.CrossRefGoogle Scholar
  45. Srivastava LM (1963) Secondary phloem in the Pinaceae. Univ Cal Publ Bot 36,142 pp.Google Scholar
  46. Srivastava LM (1969) On the ultrastructure of cambium and its derivatives. III. The secondary walls of the sieve elements of Pinus strobus. Am J Bot 56: 354–361.CrossRefGoogle Scholar
  47. Srivastava LM, O’Brien TP (1966) On the ultrastructure of cambium and its vascular derivatives. II. Secondary phloem of Pinus strobus L. Protoplasma 61: 277–293.CrossRefGoogle Scholar
  48. Timell TE (1973) Ultrastructure of the dormant and active cambial zones and the dormant phloem associated with formation of normal and compression woods in Picea abies (L.) Karst. Tech Publ 96: 3–94.Google Scholar
  49. Warmbrodt RD, Eschrich W (1985) Studies on the mycorrhizas of Pinus sylvestris L. produced in vitro with the basidiomycete Suillus variegatus (SW. ex FR.) O. Kuntze. II. Ultrastructural aspects of the endodermis and vascular cylinder of the mycorrhizal rootlets. New Phytol 100: 403–418.CrossRefGoogle Scholar
  50. Wooding FBP (1966) The development of the sieve elements of Pinus pinea. Planta 69:230–243.CrossRefGoogle Scholar
  51. Wooding FBP (1968) Fine structure of callus phloem in Pinus pinea. Planta 83. 99–110.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Alexander Schulz

There are no affiliations available

Personalised recommendations