Skip to main content

Conifers

  • Chapter
Book cover Sieve Elements

Abstract

The Coniferophytina represent a very successful subdivision of the plant kingdom. While most of its families are spread over the entire northern hemisphere and often establish extremely large populations, some also occur in the southern hemisphere. Moreover, since the conifers include individuals of the bristlecone pine (Pinus longaeva) from the Californian White Mountains which are almost 5000 years old (according to tree-ring counts, cf. Ferguson 1968) and the giant Californian Redwood trees (Sequoia sempervirens) — which measure more than 110 m in height and over 11 m in diameter — this group also holds the longevity and size records among seed plants. Rapid growth and high yield are other factors specifically attributed to them which have led to the preference of the conifer softwood in commercial wood production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alfieri FJ, Evert RF (1968a) Observations on albuminous cells in Pinus. Planta 78: 93–97.

    Article  Google Scholar 

  • Alfieri FJ, Evert RF (1968b) Seasonal development of the secondary phloem in Pinus. Am J Bot 55: 518–528.

    Article  Google Scholar 

  • Alosi MC, Park RB (1983) Fractionation and polypeptide analysis of phloem tissue of Pinus sabiniana Dougl. Planta 157: 298–306.

    Article  CAS  Google Scholar 

  • Barnett JR (1974) Secondary phloem in Pinus radiata D. Don. I. Structure of differentiating sieve cells. N Z J Bot 12: 245–260.

    Google Scholar 

  • Behnke H-D (1974) Sieve-element plastids of gymnospermae: their ultrastructure in relation to systematics. Plant Syst Evol 123:1–12.

    Article  Google Scholar 

  • Behnke H-D (1983) Cytology and morphogenesis of higher plant cells — phloem. In: Ellenberg H, Esser K, Kubitzki K, Schnepf E, Ziegler H (eds) Progress in botany, vol 45. Springer, Berlin Heidelberg, pp 18–35.

    Google Scholar 

  • Behnke H-D (1986) Sieve element characters and the systematic position of Austrobaileya, Austrobaileyaceae — with comments to the distinction and definition of sieve cells and sieve-tube members. Plant Syst Evol 152:101–121.

    Article  Google Scholar 

  • Behnke H-D, Paliwal GS (1973) Ultrastructure of phloem and its development in Gnetum gnemon, with some observations on Ephedra campylopoda. Protoplasma 78: 305–319.

    Article  Google Scholar 

  • Carde J-P (1973) Le tissu de transfert (=cellules de Strasburger) dans les aiguilles du Pin maritime (Pinus pinaster Ait.) I. Etude histologique et infrastructurale du tissu adulte. J Microsc 17: 65–88.

    Google Scholar 

  • Carde J-P (1974) Le tissu de transfert (=cellules de Strasburger) dans les aiguilles du Pin maritime (Pinus pinaster Ait) II. Caractères cytochimiques et infrastructuraux de la paroi et des plasmodesmes. J Microsc 20: 51–72.

    Google Scholar 

  • Chauveaud G (1902a) De l’existence d’éléments précurseurs des tubes criblés chez les Gymnospermes. C R Acad Sci 134:1605–1606.

    Google Scholar 

  • Chauveaud G (1902b) Développement des éléments précurseurs des tubes criblés dans le Thuja orientalis. Bull Mus Hist Nat 8: 447–454.

    Google Scholar 

  • Chauveaud G (1903) Recherches sur le mode de formation des tubes criblés dans la racine des Cryptogames vasculaires et des Gymnospermes. Ann Sci Nat Bot 18:165–277.

    Google Scholar 

  • Dute RR (1983) Features of sieve-element ontogeny in Ginkgo biloba. Am J Bot 70 (5,2): 19.

    Article  Google Scholar 

  • Esau K (1969) The phloem. In: Zimmermann W, Ozenda P, Wulff HD (eds) Encyclopedia of plant anatomy, vol 5, pt 2. Borntraeger, Berlin Stuttgart, 505 pp.

    Google Scholar 

  • Evert RF (1984) Comparative structure of phloem. In: White RA, Dickison WC (eds) Contemporary problems in plant anatomy. Academic Press, New York London, pp 145–234.

    Google Scholar 

  • Evert RF, Davis JD, Tucker CM, Alfieri FJ (1970) On the occurrence of nuclei in mature sieve elements. Planta 95: 281–296.

    Article  Google Scholar 

  • Ferguson (1968) Bristlecone pine: science and esthetics. Science 159: 839–846.

    Article  PubMed  CAS  Google Scholar 

  • Gourret J-P, Strullu D-G (1974) Evolution des protéoplastes du phloème de Pseudotsuga menziesii Mirb. (Abietacées) au cours de la différenciation des éléments criblés. J Microsc 20:73–82.

    Google Scholar 

  • Harris WM (1972) Ultrastructural observations in Pinaceae leaf phloem I. The spring condition. New Phytol 71: 169–173.

    Article  Google Scholar 

  • Hébant C (1975) Lack of incorporation of tritiated uridine by nuclei of mature sieve elements in Metasequoia glyptostroboides and Sequoiadendron giganteum. Planta 126: 161–163.

    Article  Google Scholar 

  • Kollmann R, Schumacher W (1961) Über die Feinstruktur des Phloems von Metasequoia glyptostroboides und seine jahreszeitlichen Veränderungen, I. Mitteilung: Das Ruhephloem. Planta 57: 583–607.

    Article  Google Scholar 

  • Kollmann R, Schumacher W (1962a) Über die Feinstruktur des Phloems von Metasequoia glyptostroboides und seine jahreszeitlichen Veränderungen, II. Mitteilung: Vergleichende Untersuchungen der plasmatischen Verbindungsbrücken in Phloemparenchymzellen und Siebzellen. Planta 58: 366–386.

    Article  Google Scholar 

  • Kollmann R, Schumacher W (1962b) Über die Feinstruktur des Phloems von Metasequoia glyptostroboides und seine jahreszeitlichen Veränderungen, III. Mitteilung: Die Reaktivierung der Phloemzellen im Frühjahr. Planta 59: 195–221.

    Article  Google Scholar 

  • Kollmann R, Schumacher W (1963) Über die Feinstruktur des Phloems von Metasequoia glyptostroboides und seine jahreszeitlichen Veränderungen, IV. Mitteilung: Weitere Beobachtungen zum Feinbau der Plasmabrücken in den Siebzellen. Planta 60: 360–389.

    Article  Google Scholar 

  • Kollmann R, Schumacher W (1964) Über die Feinstruktur des Phloems von Metasequoia glyptostroboides und seine jahreszeitlichen Veränderungen, V. Mitteilung: Die Differenzierung der Siebzellen in Verlaufe einer Vegetationsperiode. Planta 63:155–190.

    Article  Google Scholar 

  • Murmanis L (1974) Filamentous component of secondary phloem sieve elements in Pinus strobus L. Ann Bot (London) 38: 859–863.

    Google Scholar 

  • Murmanis L, Evert RF (1966) Some aspects of sieve cell ultrastructure in Pinus strobus. Am J Bot 53:1065–1078.

    Article  Google Scholar 

  • Neuberger DS, Evert RF (1974) Structure and development of the sieve element protoplast in the hypocotyl of Pinus resinosa. Am J Bot 61: 360–374.

    Article  Google Scholar 

  • Neuberger DS, Evert RF (1975) Structure and development of sieve areas in the hypocotyl of Pinus resinosa. Protoplasma 84:109–125.

    Article  Google Scholar 

  • Neuberger DS, Evert RF (1976) Structure and development of sieve cells in the primary phloem of Pinus resinosa. Protoplasma 87: 27–31.

    Article  Google Scholar 

  • Parameswaran N (1971) Zur Feinstruktur der Assimilatleitbahnen in der Nadel von Pinus silvestris. Cytobiologie 3: 70–88.

    Google Scholar 

  • Parthasarathy MV, Pesacreta TC (1980) Microfilaments in plant vascular cells. Can J Bot 58:807–815.

    Article  Google Scholar 

  • Pesacreta TC, Parthasarathy MV (1984) Microfilament bundles in the roots of a conifer, Chamaecyparis obtusa. Protoplasma 121: 54–64.

    Article  Google Scholar 

  • Salmon J (1946) Différenciation des tubes criblés chez les Angiospermes: Recherches cytologiques. Rev Cytol Cytophysiol Veget 9: 55–168.

    Google Scholar 

  • Sauter JJ (1974) Structure and physiology of Strasburger cells. Ber Dtsch Bot Ges 87: 327–336.

    Google Scholar 

  • Sauter JJ, Dörr I, Kollmann R (1976) The ultrastructure of Strasburger cells ( =albuminous cells) in the secondary phloem of Pinus nigra var.austriaca (Hoess) Badoux. Protoplasma 88:31–49.

    Article  Google Scholar 

  • Schulz A (1987) Sieve-element differentiation and fluoresceine translocation in wound-phloem of pea roots after complete severance of the stele. Planta 170: 289–299.

    Article  Google Scholar 

  • Schulz A (1988) Vascular differentiation in the root cortex of peas: premitotic stages of cytoplasmic reactivation. Protoplasma 143: 176–187.

    Article  Google Scholar 

  • Schulz A, Behnke H-D (1987) Feinbau und Differenzierung des Phloems von Buchen, Fichten und Tannen aus Waldschadensgebieten. PEF-Ber 16, Kernforschungszentrum Karlsruhe, 95 pp.

    Google Scholar 

  • Schulz A, Alosi AC, Sabnis DD, Park RB (1989) A phloem-specific, lectin-like protein is located in pine sieve-element plastids by immunocytochemistry. Planta 179: 506–515.

    Article  CAS  Google Scholar 

  • Singh AP (1984a) Pinus radiata needle trace studies: fine structure of immature sieve cells in the primary phloem. Cytologia 49: 359–384.

    Article  Google Scholar 

  • Singh AP (1984b) Microfilaments in the phloem of Pinus radiata cotyledons. Cytologia 49:385–393.

    Article  Google Scholar 

  • Smoot EL (1984) Phloem anatomy of the carboniferous pteridosperm Medullosa and evolutionary trends in gymnosperm phloem. Bot Gaz 145: 550–564.

    Article  Google Scholar 

  • Srivastava LM (1963) Secondary phloem in the Pinaceae. Univ Cal Publ Bot 36,142 pp.

    Google Scholar 

  • Srivastava LM (1969) On the ultrastructure of cambium and its derivatives. III. The secondary walls of the sieve elements of Pinus strobus. Am J Bot 56: 354–361.

    Article  Google Scholar 

  • Srivastava LM, O’Brien TP (1966) On the ultrastructure of cambium and its vascular derivatives. II. Secondary phloem of Pinus strobus L. Protoplasma 61: 277–293.

    Article  Google Scholar 

  • Timell TE (1973) Ultrastructure of the dormant and active cambial zones and the dormant phloem associated with formation of normal and compression woods in Picea abies (L.) Karst. Tech Publ 96: 3–94.

    Google Scholar 

  • Warmbrodt RD, Eschrich W (1985) Studies on the mycorrhizas of Pinus sylvestris L. produced in vitro with the basidiomycete Suillus variegatus (SW. ex FR.) O. Kuntze. II. Ultrastructural aspects of the endodermis and vascular cylinder of the mycorrhizal rootlets. New Phytol 100: 403–418.

    Article  Google Scholar 

  • Wooding FBP (1966) The development of the sieve elements of Pinus pinea. Planta 69:230–243.

    Article  Google Scholar 

  • Wooding FBP (1968) Fine structure of callus phloem in Pinus pinea. Planta 83. 99–110.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schulz, A. (1990). Conifers. In: Behnke, HD., Sjolund, R.D. (eds) Sieve Elements. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74445-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74445-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74447-1

  • Online ISBN: 978-3-642-74445-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics