Skip to main content

Phloem Proteins

  • Chapter
Sieve Elements

Abstract

Phloem cells contain specific proteins, some of which may be present in large quantities and visible with both the light and electron microscopes, while others can be demonstrated only with chemical methods such as gel electrophoresis. The first accounts of these substances in the phloem were from observations with the light microscope. In the middle of the nineteenth century Hartig (1854) observed characteristic accumulations of material in phloem, especially on the sieve plates. This material became known as slime and the accumulations as slime plugs. Other early workers recognized that the source of slime in mature sieve elements was from cell inclusions which they called slime bodies and also that the staining reactions of slime indicated a considerable protein content (Wilhelm 1880). In the latter part of the nineteenth century several workers showed that slime plugs resulted from the flow of the contents of sieve elements toward a cut surface as a result of injury (Nägeli 1861 ; Fischer 1884).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen AK (1979) A lectin from the exudate of the fruit of the vegetable marrow (Cucurbita pepo) that has specificity for β-,4-linked N-acetylglucosamine oligosaccharides. Biochem J 183:133–137.

    PubMed  CAS  Google Scholar 

  • Alosi MC, Melroy DL, Park RB (1988) The regulation of phloem exudate from Cucurbita fruit by dilution, glutathione and glutathione reductase. Plant Physiol 86: 1089–1094.

    Article  PubMed  CAS  Google Scholar 

  • Arsanto JP (1982) Observations on P-protein in dicotyledons. Substructural and developmental features. Am J Bot 69:1200–1212.

    Article  CAS  Google Scholar 

  • Behnke H-D (1969) Über den Feinbau und die Ausbreitung der Siebröhren-Plasmafilamente und über Bau und Differenzierung der Siebporen bei einigen Monocotylen und bei Nuphar. Protoplasma 68: 377–402.

    Article  Google Scholar 

  • Behnke H-D (1972) Sieve-tube plastids in relation to systematics. An attempt towards a classification by ultrastructural analysis. Bot Rev 38:155–197.

    Article  Google Scholar 

  • Behnke H-D (1974a) Comparative ultrastructural investigations of angiosperm sieve elements: aspects of the origin and early development of P-protein. Z Pflanzenphysiol 74:22–34.

    Google Scholar 

  • Behnke H-D (1974b) Sieve element plastids of the Gymnospermae. Their ultrastructure in relation to systematics. Plant Syst Evol 123:1–12.

    Article  Google Scholar 

  • Behnke H-D (1981) Sieve element characters. Nord J Bot 1: 381–400.

    Article  Google Scholar 

  • Behnke H-D, Dörr I (1967) Zur Herkunft und Struktur der Plasmafilamente in Assimilatleitbahnen. Planta 74:18–44.

    Article  Google Scholar 

  • Behnke H-D, Kiritsis U (1983) Ultrastructure and differentiation of sieve elements in primitive angiosperms. I. Winteraceae. Protoplasma 118: 148–156.

    Article  Google Scholar 

  • Behnke H-D, Schulz A (1983) The development of specific sieve-element plastids in wound phloem of Coleus blumei (S-type) and Pisum sativum (P-type), regenerated from amyloplast-containing parenchyma cells. Protoplasma 114: 125–132.

    Article  Google Scholar 

  • Bentwood BJ, Cronshaw J (1976) Biochemistry and cytochemical localization of acid phosphatase in the phloem of Nicotiana tabacum. Planta 130: 97–104.

    Article  CAS  Google Scholar 

  • Bentwood BJ, Cronshaw J (1978) Cytochemical localization of adenosine triphosphatase in the phloem of Pisum sativum and its relation to the function of transfer cells. Planta 140: 111–120.

    Article  CAS  Google Scholar 

  • Beyenbach J, Weber C, Kleinig H (1974) Sieve tube proteins from Cucurbita maxima. Planta 119:113–124.

    Article  CAS  Google Scholar 

  • Bouck GB, Cronshaw J (1965) The fine structure of differentiating sieve tube elements. J Cell Biol 25: 79–96.

    Article  Google Scholar 

  • Buvat R (1963) Sur la présence d’acide ribonucléique dans les corpuscles muqueux des cellules criblées de Cucurbita pepo L. CR Acad Sci Paris 257: 733–735.

    CAS  Google Scholar 

  • Campbell R (1972) Electron microscopy of the development of needlės of Pinus nigra var maritima. Ann Bot (London) 36: 711–720.

    Google Scholar 

  • Catesson AM (1973) Observations cytochimiques sur les tubes criblés de quelques angiospermes. J Microsc Paris 16: 95–104.

    CAS  Google Scholar 

  • Catesson AM, Czaninski Y (1967) Mise en évidence d’une activité phosphatasique acide dans le reticulum endoplasmique des tissus conducteurs de Robinia et de Sycomore. J Microsc Paris 6: 509–514.

    Google Scholar 

  • Catesson AM, Czaninski Y (1968) Localization ultrastructurale de la phosphatase acide et cycle saisonnier dans les tissus conducteurs de quelques arbres. Bull Soc Fr Physiol Veg 14:165–73.

    Google Scholar 

  • Cornish-Bowden A (1977) Assessment of protein sequence identity from amino-acid composition data. J Theoret Biol 65: 735–742.

    Article  CAS  Google Scholar 

  • Cornish-Bowden A (1979) How reliably do amino-acid composition comparisons predict sequence similarities between proteins. J Theor Biol 76: 369–386.

    Article  PubMed  CAS  Google Scholar 

  • Crafts AS, Crisp CE (1971) Phloem transport in plants. Freeman, San Francisco.

    Google Scholar 

  • Cronshaw J (1970) The P-protein components of sieve elements. In: 7me Congr Int Microscopie electronique, Grenoble. Soc Fr Microsc Electron, Paris, pp 429–430.

    Google Scholar 

  • Cronshaw J (1975a) P-proteins. In: Aronoff S, Dainty J, Gorham PR, Srivastava LM, Swanson CA (eds) Phloem transport. Plenum, New York London, pp 79–115.

    Google Scholar 

  • Cronshaw J (1975b) Sieve element walls. In: Aronoff S, Dainty J, Gorham PR, Srivastava LM, Swanson CA (eds) Phloem transport. Plenum, New York London, pp 129–147.

    Google Scholar 

  • Cronshaw J (1980) Histochemical localization of enzymes in the phloem. Ber Dtsch Bot Ges 93:123–139.

    CAS  Google Scholar 

  • Cronshaw J (1981) Phloem structure and function. Annu Rev Plant Physiol 32: 465–484.

    Article  CAS  Google Scholar 

  • Cronshaw J (1985) The fine structure of phloem cells. In: Proc 43rd Annu Meet Electron Microscopical Society of America. San Francisco Press, San Francisco, pp 632–635.

    Google Scholar 

  • Cronshaw J, Anderson R (1971) Phloem differentiation in tobacco pith culture. J Ultrastruct Res 34: 244–259.

    Article  PubMed  CAS  Google Scholar 

  • Cronshaw J, Esau K (1967) Tubular and fibrillar components of mature and differentiating sieve elements. J Cell Biol 34: 801–816.

    Article  PubMed  CAS  Google Scholar 

  • Cronshaw J, Esau K (1968a) P-protein in the phloem of Cucurbita. I. The development of P-protein bodies. J Cell Biol 38: 25–39.

    Article  PubMed  CAS  Google Scholar 

  • Cronshaw J, Esau K (1968b) P-protein in the phloem of Cucurbita. II. The P-protein of mature sieve elements. J Cell Biol 38: 292–303.

    Article  PubMed  CAS  Google Scholar 

  • Cronshaw J, Gilder J, Stone D (1973) Fine structural studies of P-protein in Cucurbita, Cucumis and Nicotiana. J Ultrastruct Res 45:192–205.

    Article  PubMed  CAS  Google Scholar 

  • Deshpande BP (1974) On the occurrence of spiny vesicles in the phloem of Salix. Ann Bot (London) 38: 865–868.

    Google Scholar 

  • Deshpande BP, Evert RF (1970) A reevaluation of extruded nucleoli in sieve elements. J Ultrastruct Res 33: 483–494.

    Article  PubMed  CAS  Google Scholar 

  • Esau K (1969) The phloem. In: Zimmermann W, Ozenda P, Wulff HD (eds) Encyclopedia of plant anatomy, vol 5, pt. 2. Borntraeger, Berlin Stuttgart, 505 pp.

    Google Scholar 

  • Esau K (1978) The protein inclusions in sieve elements of cotton (Gossypium hirsutum L.). J Ultrastruct Res 63: 224–235.

    Article  PubMed  CAS  Google Scholar 

  • Esau K, Charvat ID (1975) An ultrastructural study of acid phosphatase localization in cells of Phaseolus vulgaris phloem by the use of the azo dye method. Tissue Cell 7: 619–630.

    Article  PubMed  CAS  Google Scholar 

  • Esau K, Cheadle VI (1965) Cytologic studies on phloem. Univ Cal Publ Bot 36: 253–344.

    Google Scholar 

  • Esau K, Cronshaw J (1967) Tubular components in cells of healthy and tobacco mosaic virus infected Nicotiana. Virology 33: 26–35.

    Article  PubMed  CAS  Google Scholar 

  • Esau K, Magyarosy AC (1979a) A crystalline inclusion in sieve element nuclei of Amsinckia. I. The inclusion in differentiating cells. J Cell Sci 38:1–10.

    PubMed  CAS  Google Scholar 

  • Esau K, Magyarosy AC (1979b) A crystalline inclusion in sieve element nuclei of Amsinckia. II. The inclusion in maturing cells. J Cell Sci 38: 11–22.

    PubMed  CAS  Google Scholar 

  • Esau K, Thorsch J (1982) Nuclear crystalloids in sieve elements of species of Echium (Boraginaceae). J Cell Sci 54: 149–160.

    Google Scholar 

  • Eschrich W, Evert RF, Heyser W (1971) Proteins of sieve tube exudate of Cucurbita maxima. Planta 100: 208–221.

    Article  CAS  Google Scholar 

  • Evert RF, Deshpande BP (1970) Nuclear protein in sieve elements of Tilia americana. J Cell Biol 44: 462–466.

    Article  PubMed  CAS  Google Scholar 

  • Evert RF, Eichhorn SE (1974) Sieve-element ultrastructure in Platycerium bifuracatum and some other polypodiaceous ferns: the nucleus. Planta 119: 301–318.

    Article  Google Scholar 

  • Ezeala DO, Hart JW, Sabnis DD (1974a) Fractionation of monovalent ion-stimulated nucleoside triphosphatase activity in extracts of petiolar tissue. J Exp Bot 25: 1037–1044.

    Article  CAS  Google Scholar 

  • Ezeala DO, Hart JW, Sabnis DD (1974b) Stimulation by monovalent ions of adenosine triphosphatase activity in extracts of petiolar tissue. J Exp Bot 25: 1045–1052.

    Article  CAS  Google Scholar 

  • Fischer A (1884) Untersuchungen über das Siebröhren-System der Cucurbitaceen. Bornträger, Berlin.

    Google Scholar 

  • Fisher DB (1975) Structure of functional soybean sieve elements. Plant Physiol 56: 555–569.

    Article  PubMed  CAS  Google Scholar 

  • Freundlich A (1974) No polysaccharide demonstrated in filamentous structures in sieve elements by Thiery’s periodic acid-thiocarbohydrazide-silver proteinate method for electron microscopy. Planta 118: 85–87.

    Article  CAS  Google Scholar 

  • Gamaley YV (1973) The phloem protein in the conifer sieve cells (according to electron microscopic data). Bot Z 58: 981–985.

    Google Scholar 

  • Gerola FM, Lombardo G, Cataro A (1969) Histological localization of citrus infectious variegation (CW) in Phaseolus vulgaris. Protoplasma 67: 319–326.

    Article  Google Scholar 

  • Gietl C, Ziegler H (1980a) Affinity chromatography of carbohydrate binding proteins in the phloem exudate from several tree species. Biochem Physiol Pflanzen 175: 50–57.

    CAS  Google Scholar 

  • Gietl C, Ziegler H (1980b) Distribution of carbohydrate-binding proteins in different tissues of Robinia pseudoacacia L. Biochem Physiol Pflanzen 175: 58–66.

    CAS  Google Scholar 

  • Gietl C, Kauss H, Ziegler H (1979) Affinity chromatography of a lectin from Robinia pseudoacacia L. and demonstration of lectins in sieve tube sap from other tree species. Planta 144:367–372.

    Article  CAS  Google Scholar 

  • Gilder J, Cronshaw J (1973a) The distribution of adenosine triphosphatase activity in differentiating and mature phloem cells of Nicotiana tabacum and its relationship to phloem transport. J Ultrastruct Res 44: 388–404.

    Article  PubMed  CAS  Google Scholar 

  • Gilder J, Cronshaw J (1973b) Adenosine triphosphatase in the phloem of Cucurbita. Planta 110:189–204.

    Article  CAS  Google Scholar 

  • Gilder J, Cronshaw J (1974) A biochemical and cytochemical study of adenosine triphosphatase activity in the phloem of Nicotiana tabacum. J Cell Biol 60: 221–235.

    Article  PubMed  CAS  Google Scholar 

  • Hartig T (1854) Über die Querscheidewände zwischen den einzelnen Gliedern der Siebröhren in Cucurbita pepo. Bot Z 12: 51–54.

    Google Scholar 

  • Hébant C (1969) Observations sur le phloème de quelque Filicinées tropicales. Nat Monspel Ser Bot 20:135–196.

    Google Scholar 

  • Hoefert LL (1979) Ultrastructure of developing sieve elements in Thlaspi arvense L. I. The immature state. Am J Bot 66: 925–932.

    Article  Google Scholar 

  • Ilker R, Currier HB (1974) Heavy meromyosin complexing filaments in the phloem of Vicia faba and Xylosma congestum. Planta 120: 311–316.

    Article  Google Scholar 

  • Ilker R, Currier HB (1975) Histochemical studies of an inclusion body and P-protein in phloem of Xylosma congestum. Protoplasma 85:127–132.

    Article  Google Scholar 

  • Kauss H, Ziegler H (1974) Carbohydrate-binding proteins from the sieve-tube sap of Robinia pseudoacacia. Planta 121:197–200.

    Article  CAS  Google Scholar 

  • Kleinig H, Dörr I, Kollmann R (1971a) Vineblastine-induced precipitation of phloem proteins in vitro. Protoplasma 73: 293–302.

    Article  PubMed  CAS  Google Scholar 

  • Kleinig H, Dörr I, Weber C, Kollmann R (1971b) Filamentous proteins from plant sieve tubes. Nature New Biol 229:152–153.

    Article  PubMed  CAS  Google Scholar 

  • Kleinig H, Thoenes J, Dörr I, Kollmann R (1975) Filament formation in vitro of a sieve tube protein from Cucurbita maxima and Cucurbita pepo. Planta 127: 163–170.

    Article  CAS  Google Scholar 

  • Kollmann R (1980) Fine structural and biochemical characterization of phloem proteins. Can J Bot 58: 802–806.

    Article  CAS  Google Scholar 

  • Kollmann R, Dörr I, Kleinig H (1970) Protein filaments — structural components of the phloem exudate. I. Observations with Cucurbita and Nicotiana. Planta 95: 86–94.

    Article  CAS  Google Scholar 

  • LaFlèche D (1966) Ultrastructure et cytochimie des inclusions flagellées des cellules criblées de Phaseolus vulgaris. J Microsc Paris 5: 493–510.

    Google Scholar 

  • Lawton DM (1978) P-protein crystals do not disperse in uninjured sieve elements in roots of runner bean (Phaseolus multiflorus) fixed with glutaraldehyde. Ann Bot (London) 42: 353–361.

    Google Scholar 

  • Lawton DM, Johnson RPC (1976) A superhelical model for the ultrastructure of “P-protein tubules” in sieve elements of Nymphoides peltata. Cytobiologie 14: 1–17.

    CAS  Google Scholar 

  • McEuen AR, Hart JW, Sabnis DD (1981) Calcium-binding protein in sieve tube exudate. Planta 151: 531–534.

    Article  CAS  Google Scholar 

  • Nägeli CW (1861) Über die Siebröhren von Cucurbita. Sitzungsber Königl Bayer Akad Wiss München 1:212–238.

    Google Scholar 

  • Nehls R, Schaffner G, Kollmann R (1978) Feinstruktur des Protein-Einschlusses in den Siebelementen von Salix sachalinensis Fr. Schmidt. Z Pflanzenphysiol 87:113–127.

    Google Scholar 

  • Newcomb EH (1967) A spiny vesicle in the slime-producing cells of the bean root. J Cell Biol 35:C17–C22.

    Article  PubMed  CAS  Google Scholar 

  • Northeote DH, Wooding RBP (1966) Development of sieve tubes in Acer pseudoplatanus. Proc R Soc London Ser B 163: 524–537.

    Article  Google Scholar 

  • Oberhäuser R, Kollmann R (1977) Cytochemische Charakterisierung des sogenannten Freien Nucleolus als Proteinkörper in den Siebelementen von Passiflora coerulea. Z Pflanzenphysiol 84: 61–75.

    Google Scholar 

  • Palevitz BA, Hepler PK (1975) Is P-protein actin like? Not yet. Planta 125: 261–271.

    Article  Google Scholar 

  • Palevitz BA, Newcomb EH (1971) The ultrastructure and development of tubular and crystalline P-protein in the sieve elements of certain papilionaceous legumes. Protoplasma 72:399–426.

    Article  Google Scholar 

  • Parameswaran N (1971) Zur Feinstruktur der Assimilatleitbahnen in der Nadel von Pinus sylvestris. Cytobiology 3: 70–88.

    Google Scholar 

  • Parthasarathy MV, Mühlethaler K (1969) Ultrastructure of protein tubules in differentiating sieve elements. Cytobiologie 7: 17–36.

    Google Scholar 

  • Read SM, Northcote DH (1983a) Chemical and immunological similarities between the phloem proteins of three genera of the Cucurbitaceae Planta 158:119–127.

    Article  CAS  Google Scholar 

  • Read SM, Northcote DH (1983b) Subunit structure and interactions of the phloem proteins of Cucurbita maxima (pumpkin). Eur J Biochem 134: 561–569.

    Article  PubMed  CAS  Google Scholar 

  • Rouschal E (1941) Untersuchungen über die Protoplasmatik und Funktion der Siebröhren. Flora 35: 135–200.

    CAS  Google Scholar 

  • Sabnis DD, Hart JW (1974) Studies on the possible occurrence of actomyosin-like protein in phloem. Planta 118: 271–281.

    Article  CAS  Google Scholar 

  • Sabnis DD, Hart JW (1976) A comparative analysis of phloem exudate proteins from Cucumis melo, Cucumis sativus and Cucurbita maxima by polyacrylamide gel electrophoresis and isoelectric focussing. Planta 130: 211–218.

    Article  CAS  Google Scholar 

  • Sabnis DD, Hart JW (1978) The isolation and some properties of a lectin (haemagglutinin) from Cucurbita phloem exudate. Planta 142: 97–101.

    Article  CAS  Google Scholar 

  • Sabnis DD, Hart JW (1979) Heterogeneity in phloem protein complements from different species. Consequences to hypotheses concerned with P-protein function. Planta 145: 459–466.

    Article  CAS  Google Scholar 

  • Sabnis DD, Hart JW (1982) Microtubule proteins and phloem protein. In: Boulter D, Parthier B (eds) Nucleic acids and protein in plants. Encyclopedia of plant physiology, NS, vol 14a. Springer, Berlin Heidelberg New York, pp 401–437.

    Google Scholar 

  • Salmon J (1946) Différenciation des tubes criblées chez les Angiospermes. Rev Cytol Cytophysiol Veg 9: 55–168.

    Google Scholar 

  • Salmon J (1951) Mise en évidence de ribonucléoproteides dans les cellules criblées au moyen de la méthode de Brachet. C R Acad Sci Paris 233: 495–496.

    PubMed  CAS  Google Scholar 

  • Sauter JJ (1972) Cytochemical demonstration of sulfhydryl disulfide-containing proteins in sieve elements of conifers. Naturwissenschaften 59: 470.

    Article  CAS  Google Scholar 

  • Schulz A, Alosi AC, Sabnis DD, Park RB (1989) A phloem-specific, lectin-like protein is located in pine sieve-element plastids by immunocytochemistry. Planta 179: 506–515.

    Article  CAS  Google Scholar 

  • Sham MH, Northcote DH (1987) Transcription and translation of phloem protein (PP2) during phloem differentiation in Cucurbita maxima. Planta 170: 392–399.

    Article  CAS  Google Scholar 

  • Sloan RT, Sabnis DD, Hart JW (1976) The heterogeneity of phloem exudate from different plants: A comparative survey of ten plants using polyacrylamide gel electrophoresis. Planta 132: 97–102.

    Article  CAS  Google Scholar 

  • Smith LM, Sabnis DD, Johnson RPC (1987) Immunocytochemical localisation of phloem lectin from Cucurbita maxima using peroxidase and colloidal gold labels. Planta 170: 461–470.

    Article  CAS  Google Scholar 

  • Steer MW, Newcomb EH (1969) Development and dispersal of P-protein in the phloem of Coleus blumei Benth. J Cell Sci 4: 155–169.

    PubMed  CAS  Google Scholar 

  • Stone DL, Cronshaw J (1973) Fine structure of P-protein filaments from Ricinus communis. Planta 113:193–206.

    Article  Google Scholar 

  • Thaine RG (1969) Movement of sugars through plants by cytoplasmic pumping. Nature (London) 222: 873–875.

    Article  Google Scholar 

  • Walker TS (1972) The purification and some properties of a protein causing gelling in phloem sieve tube exudate from Cucurbita pepo. Biochim Biohphys Acta 257: 433–444.

    CAS  Google Scholar 

  • Walker TS, Thaine R (1971) Proteins and fine structural components in exudate from sieve tubes in Cucurbita pepo stems. Ann Bot (London) 35: 773–790.

    CAS  Google Scholar 

  • Wark MC, Chambers TC (1965) Fine structure of the phloem of Pisum sativum. 1. The sieve element ontogeny. Aust J Bot 13: 171–183.

    Google Scholar 

  • Weber C, Kleinig H (1971) Molecular weights of Cucurbita sieve tube proteins. Planta 99:179–182.

    Article  CAS  Google Scholar 

  • Weber C, Franke WW, Kartenbeck J (1974) Structure and biochemistry of phloem-proteins isolated from Cucurbita maxima. Exp Cell Res 87: 79–106.

    Article  PubMed  CAS  Google Scholar 

  • Wergin WP, Newcomb EH (1970) Formation and dispersal of crystalline P-protein in sieve elements of soybean (Glycine max L.). Protoplasma 71: 365–388.

    Article  Google Scholar 

  • Wergin WP, Palevitz BA, Newcomb EH (1975) Structure and development of P-protein in phloem parenchyma and companion cells of legumes. Tissue Cell 7: 227–242.

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm K (1880) Beiträge zur Kenntnis des Siebröhrenapparates dicotyler Pflanzen. Engelmann, Leipzig.

    Google Scholar 

  • Williamson RE (1972) An investigation of the contractile protein hypothesis of phloem translocation. Planta 106:149–157.

    Article  CAS  Google Scholar 

  • Wooding FBP (1969) P-protein and microtubular systems in Nicotiana callus phloem. Planta 85:284–98.

    Article  CAS  Google Scholar 

  • Yapa PAJ, Spanner DC (1972) The effect of protease digestion (in situ) on the slime substance of mature sieve tubes. Planta 107: 89–96.

    Article  CAS  Google Scholar 

  • Zee SY (1968) Ontogeny of cambium and phloem in the epicotyl of Pisum sativum. Aust J Bot 17:441–456.

    Article  Google Scholar 

  • Zee SY (1969) Fine structure of the differentiating sieve elements of Vicia faba. Aust J Bot 17:441–56.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cronshaw, J., Sabnis, D.D. (1990). Phloem Proteins. In: Behnke, HD., Sjolund, R.D. (eds) Sieve Elements. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74445-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74445-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74447-1

  • Online ISBN: 978-3-642-74445-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics