Skip to main content

Sieve Elements of Graft Unions

  • Chapter

Abstract

In grafted plants the various relations between scion and stock are based on exchange of heterogeneous substances between the partners; many of them being organic compounds which are translocated in the symplast (see reviews by Brabec 1965 and Carr 1976). Although symplastic continuity between cells in the graft interface has often been postulated, reliable experimental proof was difficult to obtain because of the uncertainty in localizing the exact boundary between the partners at the cellular level. This problem has been overcome by investigating heterografts with species-specific cell markers (Kollmann and Glockmann 1985; Kollmann et al. 1985). Secondarily formed plasmodesmata have been recognized in the fusion walls interconnecting the partner cells in these heterogeneous systems. However, of main importance for the success, i. e. for a long-lasting survival of the graft, a connection of the vascular bundles of scion and stock has to be achieved (Vöchting 1892; Simon 1908, 1930; Küster 1925; Funk 1929; Hayward and Went 1939; see also the reviews by Krenke 1933 and Brabec 1965). Vascular connections are formed within a region of mixed tissue derived from both partners, which we define as the graft union in the strict sense. While xylem contact has been recognized with certainty and convincingly described in the early literature (Vöchting 1892; Simon 1908; Crafts 1934; Silberschmidt 1935/36); continuous phloem connections have always been difficult to demonstrate unambiguously (Herse 1908; Crafts 1934) on account of the small size and irregular shape of the sieve elements (see also the review by Krenke 1933).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Behnke HD (1981) Sieve-element characters. Nord J Bot 1: 381–400.

    Article  Google Scholar 

  • Behnke HD, Schulz A (1980) Fine structure, pattern of division, and course of wound phloem in Coleus blumei. Planta 150: 357–365.

    Article  Google Scholar 

  • Benayoun J, Aloni R, Sachs T (1975) Regeneration around wounds and the control of vascular differentiation. Ann Bot (London) 39: 447–454.

    Google Scholar 

  • Brabec F (1965) Pfropfung und Chimären unter besonderer Berücksichtigung der entwicklungsphysiologischen Problematik. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie, vol 15/2. Springer, Berlin Heidelberg New York, pp 388–498.

    Google Scholar 

  • Carr DJ (1976) Plasmodesmata in growth and development. In: Gunning BES, Robards AW (eds) Intercellular communication in plants: studies on plasmodesmata. Springer, Berlin Heidelberg New York, pp 243–288.

    Chapter  Google Scholar 

  • Crafts AS (1934) Phloem anatomy in two species of Nicotiana, with notes on the interspecific graft union. Bot Gaz 95: 592–608.

    Article  Google Scholar 

  • Deloire A, Hébant C (1982) Peroxidase activity and lignification at the interface between stock and scion of compatible and incompatible grafts of Capsicum on Lycopersicum. Ann Bot (London) 49: 887–891.

    CAS  Google Scholar 

  • de Stigter HCM (1961) Translocation of 14C-photosynthates in the graft muskmelon/Cucurbita ficifolia. Acta Bot Neerl 10: 466–473.

    Google Scholar 

  • de Stigter HCM (1966) Parallelism between the transport of 14C-photosynthates and the flowering response in grafted Silene armeria L. Z Pflanzenphysiol 55: 11–19.

    Google Scholar 

  • de Stigter HCM (1971a) Some aspects of the physiological functioning of the graft muskmelon/ Cucurbita ficifolia. I. Melon/Cucurbita versus cucumber/ Cucurbita: differences in behaviour due to differences in degree of compatibility. Z Pflanzenphysiol 65: 223–231.

    Google Scholar 

  • de Stigter HCM (1971b) Some aspects of the physiological functioning of the graft muskmelon/ Cucurbita ficifolia. III. Recovery in presence of limited quantities of stock foliage. Z Pflanzenphysiol 65: 281–295.

    Google Scholar 

  • Esau K (1965) Plant anatomy, 2nd edn. John Wiley & Sons, New York.

    Google Scholar 

  • Esau K (1969) The phloem. In: Zimmermann W, Ozenda P, Wulff HD (eds) Encyclopedia of plant anatomy, vol 5, pt. 2. Borntraeger, Berlin Stuttgart, 505 pp.

    Google Scholar 

  • Esau K (1977) Anatomy of seed plants, 2nd edn. John Wiley & Sons, New York.

    Google Scholar 

  • Esau K, Cheadle VI, Risley EB (1962) Development of sieve-plate pores. Bot Gaz 123:233–243.

    Article  Google Scholar 

  • Eschrich W (1953) Beiträge zur Kenntnis der Wundsiebröhrenentwicklung bei Impatiens Holsti. Planta 43: 37–74.

    Article  Google Scholar 

  • Evert RF, Deshpande BP, Eichhorn SE (1971) Lateral sieve-area pores in woody dicotyledons. Can J Bot 49:1509–1515.

    Article  Google Scholar 

  • Feucht W, Schmid PPS, Christ E (1983) Kompatibilität bei Prunus avium/Prunus cerasus — Veredlungen während der Verwachsungsphase. I. Die Struktur des Phloems einschließlich der Siebröhren. Gartenbauwissenschaft 48: 45–50.

    Google Scholar 

  • Funk R (1929) Untersuchungen über heteroplastische Transplantationen bei Solanaceen und Cactaceen. Beitr Biol Pflanzen 17: 404–468.

    Google Scholar 

  • Hardham AR, McCully ME (1982a) Reprogramming of cells following wounding in pea (Pisum sativum L.) roots. I. Cell division and differentiation of new vascular elements. Protoplasma 112: 143–151.

    Article  Google Scholar 

  • Hardham AR, McCully ME (1982b) Reprogramming of cells following wounding in pea (Pisum sativum L.) roots. II. The effects of caffeine and colchicine on the development of new vascular elements. Protoplasma 112: 152–166.

    Article  CAS  Google Scholar 

  • Hayward HE, Went FW (1939) Transplantation experiments with peas. II. Bot Gaz 100:788–801.

    Article  Google Scholar 

  • Herse F (1908) Beiträge zur Kenntnis der histologischen Erscheinungen bei der Veredelung der Obstbäume. Landwirtschaftl Jahrb 37: 71–136.

    Google Scholar 

  • Jeffree CE, Yeoman MM (1983) Development of intercellular connections between opposing cells in a graft union. New Phytol 93: 491–509.

    Article  Google Scholar 

  • Jones MGK (1976) The origin and development of plasmodesmata. In: Gunning BES, Robards AW (eds) Intercellular communication in plants: studies on plasmodesmata. Springer, Berlin Heidelberg New York, pp 81–103.

    Chapter  Google Scholar 

  • Kollmann R (1975) Sieve element structure in relation to function. In: Aronoff S, Dainty J, Gorham PR, Srivastava LM, Swanson CA (eds) Phloem transport. Plenum, New York, pp 225–242.

    Google Scholar 

  • Kollmann R, Dörr I (1987) Parasitische Blütenpflanzen. Naturwissenschaften 74: 12–21.

    Article  Google Scholar 

  • Kollmann R, Glockmann C (1985) Studies on graft unions. I. Plasmodesmata between cells of plants belonging to different unrelated taxa. Protoplasma 124: 224–235.

    Article  Google Scholar 

  • Kollmann R, Dörr I, Schulz A, Behnke HD (1983) Funktionelle Differenzierung der Assimilat-leitbahnen. Ber Dtsch Bot Ges 96: 117–132.

    Google Scholar 

  • Kollmann R, Yang S, Glockmann C (1985) Studies on graft unions. II. Continuous and half plasmodesmata in different regions of the graft interface. Protoplasma 126: 19–29.

    Article  Google Scholar 

  • Krenke NP (1933) Wundkompensation, Transplantation und Chimären bei Pflanzen. Springer, Berlin.

    Google Scholar 

  • Küster E (1925) Pathologische Pflanzenanatomie, 3rd edn. Fischer, Jena.

    Google Scholar 

  • LaMotte CE, Jacobs WP (1962) Quantitative estimation of phloem regeneration in Coleus internodes. Stain Tech 37: 63–73.

    CAS  Google Scholar 

  • LaMotte CE, Jacobs WP (1963) A role of auxin in phloem regeneration in Coleus internodes. Dev Biol 8: 80–98.

    Article  CAS  Google Scholar 

  • Lindsay DW, Yeoman MM, Brown R (1974) An analysis of the development of the graft union in Lycopersicon esculentum. Ann Bot (London) 38: 639–646.

    Google Scholar 

  • Lipetz J (1970) Wound healing in higher plants. Int Rev Cytol 27: 1–28.

    Article  CAS  Google Scholar 

  • McCully ME (1983) Structural aspects of graft development. In: Moore R (ed) Vegetative compatibility responses in plants. Baylor Univ Press, Waco, Texas, pp 71–88.

    Google Scholar 

  • Monzer J, Kollmann R (1986) Vascular connections in the heterograft Lophophora williamsii Coult. on Trichocereus spachianus Ricc. J Plant Physiol 123: 359–372.

    Google Scholar 

  • Moore R (1982) Graft formation in Kalanchoe blossfeldiana. J Exp Bot 33: 533–540.

    Article  Google Scholar 

  • Moore R (1983) Physiological aspects of graft formation. In: Moore R (ed) Vegetative compatibility responses in plants. Baylor Univ Press, Waco, Texas, pp 89–105.

    Google Scholar 

  • Moore R (1984a) Graft formation in Solarium pennellii (Solanaceae). Plant Cell Rep 3:172–175.

    Article  Google Scholar 

  • Moore R (1984b) The role of direct cellular contact in the formation of compatible autografts in Sedum telephoides. Ann Bot (London) 54:127–133.

    Google Scholar 

  • Moore R, Walker DB (1981) Studies of vegetative compatibility — incompatibility in higher plants. I. A structural study of a compatible autografi in Sedum telephoides (Crassulaceae). Am J Bot 68: 820–830.

    Article  Google Scholar 

  • Muzik TJ, La Rue CD (1954) Further studies on the grafting of monocotyledons. Am J Bot 41:448–455.

    Article  Google Scholar 

  • Rachow-Brandt G (1987) Vergleichende transportphysiologische Untersuchungen an Pfropflingen unterschiedlicher Kompatibilität. Thesis, Univ Kiel.

    Google Scholar 

  • Robbertse PJ, McCully ME (1979) Regeneration of vascular tissue in wounded pea roots. Planta 145: 167–173.

    Article  Google Scholar 

  • Schmid PPS, Feucht W (1986) Carbohydrates in the phloem of Prunus avium/Prunus cerasus graftings and of homospecific controls. Angew Bot 60: 201–208.

    CAS  Google Scholar 

  • Schmid PPS, Bartscherer HC, Feucht W (1984) Ultrastructural localization of polyphenols in the sieve tubes of Prunus avium L. by ferric chloride. Sci Hortic 22: 105–111.

    Article  CAS  Google Scholar 

  • Schulz A (1986a) Wound phloem in transition to bundle phloem in primary roots of Pisum sativum L. I. Development of bundle-leaving wound-sieve tubes. Protoplasma 130: 12–26.

    Article  Google Scholar 

  • Schulz A (1986b) Wound phloem in transition to bundle phloem in primary roots of Pisum sativum L. II. The plasmatic contact between wound-sieve tubes and regular phloem. Protoplasma 130: 27–40.

    Article  Google Scholar 

  • Sharples A, Gunnery H (1933) Callus formation in Hibiscus Rosa sinensis L. and Hevea brasiliensis Müll. Arg. Ann Bot (London) 47: 837–840.

    Google Scholar 

  • Shimomura T, Fuzihara K (1977) Physiological study of graft union formation in cactus. II. Role of auxin on vascular connection between stock and scion. J Jpn Soc Hortic Sci 45:397–406.

    CAS  Google Scholar 

  • Silberschmidt K (1933) Beiträge zur Kenntnis der Stoffwechselgemeinschaft zwischen Pfropfpartnern. Planta 19: 729–780.

    Article  CAS  Google Scholar 

  • Silberschmidt K (1935/36) Die Abhängigkeit des Pfropferfolges von der systematischen Verwandtschaft der Partner. Z Bot 29: 65–137.

    CAS  Google Scholar 

  • Simon S (1908) Experimentelle Untersuchungen über die Entstehung von Gefäßverbindungen. Ber Dtsch Bot Ges 26: 364–396.

    Google Scholar 

  • Simon S (1930) Transplantationsversuche zwischen Solarium melongena und Iresine Lindeni. Jahrb Wiss Bot 72: 137–160.

    Google Scholar 

  • Stoddard FL, McCully ME (1979) Histology of the development of the graft union in pea roots. Can J Bot 57:1486–1501.

    Article  Google Scholar 

  • Stoddard FL, McCully ME (1980) Effects of excision of stock and scion organs on the formation of the graft union in Coleus: a. histological study. Bot Gaz 141: 401–412.

    Article  Google Scholar 

  • Tiedemann R (1986) Struktur und Funktion der Phloemverbindungen zwischen Reis und Unterlage beim Pfropfling Cucumis sativus auf Cucurbita ficifolia. Thesis, Univ Kiel.

    Google Scholar 

  • Tiedemann R (1989) Graft union development and symplastic phloem contact in the heterograft Cucumis sativus on Cucurbita ficifolia. J Plant Physiol 134: 427–440.

    Google Scholar 

  • Thompson NP (1967) The time course of sieve tube and xylem cell regeneration and their anatomical orientation in Coleus. Am J Bot 54: 588–595.

    Article  Google Scholar 

  • Thompson NP, Jacobs WP (1966) Polarity of IAA effect on sieve-tube and xylem regeneration in Coleus and tomato stems. Plant Physiol 41: 673–682.

    Article  PubMed  CAS  Google Scholar 

  • Vöchting H (1892) Über Transplantation am Pflanzenkörper. Untersuchungen zur Physiologie und Pathologie. Laupp, Tübingen.

    Google Scholar 

  • von Kaan-Albest A (1934) Anatomische und physiologische Untersuchungen über die Entstehung von Siebröhrenverbindungen. Z Bot 27: 1–94.

    Google Scholar 

  • Warren Wilson J, Warren Wilson PM (1981) The position of cambia regenerating in grafts between stems and abnormally-oriented petioles. Ann Bot (London) 47: 473–484.

    Google Scholar 

  • Wetmore RH, Rier JP (1963) Experimental induction of vascular tissues in callus of angiosperms. Am J Bot 50: 418–430.

    Article  CAS  Google Scholar 

  • Yeoman MM (1984) Cellular recognition systems in grafting. In: Pirson A, Zimmermann MH (eds) Encyclopedia of plant physiology, vol 11. Cellular interactions. NS. Springer, Berlin Heidelberg New York, pp 453–472.

    Google Scholar 

  • Yeoman MM, Kilpatrick DC, Miedzybrodzka MB, Gould AR (1978) Cellular interactions during graft formation in plants; a recognition phenomenon? Symp Soc Exp Biol 32:139–160.

    PubMed  CAS  Google Scholar 

  • Zee SY (1969) Fine structure of the differentiating sieve elements of Vicia faba. Aust J Bot 17:441–456.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kollmann, R., Glockmann, C. (1990). Sieve Elements of Graft Unions. In: Behnke, HD., Sjolund, R.D. (eds) Sieve Elements. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74445-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74445-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74447-1

  • Online ISBN: 978-3-642-74445-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics