Sieve Elements pp 219-237 | Cite as

Sieve Elements of Graft Unions

  • Rainer Kollmann
  • Christl Glockmann


In grafted plants the various relations between scion and stock are based on exchange of heterogeneous substances between the partners; many of them being organic compounds which are translocated in the symplast (see reviews by Brabec 1965 and Carr 1976). Although symplastic continuity between cells in the graft interface has often been postulated, reliable experimental proof was difficult to obtain because of the uncertainty in localizing the exact boundary between the partners at the cellular level. This problem has been overcome by investigating heterografts with species-specific cell markers (Kollmann and Glockmann 1985; Kollmann et al. 1985). Secondarily formed plasmodesmata have been recognized in the fusion walls interconnecting the partner cells in these heterogeneous systems. However, of main importance for the success, i. e. for a long-lasting survival of the graft, a connection of the vascular bundles of scion and stock has to be achieved (Vöchting 1892; Simon 1908, 1930; Küster 1925; Funk 1929; Hayward and Went 1939; see also the reviews by Krenke 1933 and Brabec 1965). Vascular connections are formed within a region of mixed tissue derived from both partners, which we define as the graft union in the strict sense. While xylem contact has been recognized with certainty and convincingly described in the early literature (Vöchting 1892; Simon 1908; Crafts 1934; Silberschmidt 1935/36); continuous phloem connections have always been difficult to demonstrate unambiguously (Herse 1908; Crafts 1934) on account of the small size and irregular shape of the sieve elements (see also the review by Krenke 1933).


Vascular Bundle Sieve Tube Sieve Element Graft Union Sieve Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Behnke HD (1981) Sieve-element characters. Nord J Bot 1: 381–400.CrossRefGoogle Scholar
  2. Behnke HD, Schulz A (1980) Fine structure, pattern of division, and course of wound phloem in Coleus blumei. Planta 150: 357–365.CrossRefGoogle Scholar
  3. Benayoun J, Aloni R, Sachs T (1975) Regeneration around wounds and the control of vascular differentiation. Ann Bot (London) 39: 447–454.Google Scholar
  4. Brabec F (1965) Pfropfung und Chimären unter besonderer Berücksichtigung der entwicklungsphysiologischen Problematik. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie, vol 15/2. Springer, Berlin Heidelberg New York, pp 388–498.Google Scholar
  5. Carr DJ (1976) Plasmodesmata in growth and development. In: Gunning BES, Robards AW (eds) Intercellular communication in plants: studies on plasmodesmata. Springer, Berlin Heidelberg New York, pp 243–288.CrossRefGoogle Scholar
  6. Crafts AS (1934) Phloem anatomy in two species of Nicotiana, with notes on the interspecific graft union. Bot Gaz 95: 592–608.CrossRefGoogle Scholar
  7. Deloire A, Hébant C (1982) Peroxidase activity and lignification at the interface between stock and scion of compatible and incompatible grafts of Capsicum on Lycopersicum. Ann Bot (London) 49: 887–891.Google Scholar
  8. de Stigter HCM (1961) Translocation of 14C-photosynthates in the graft muskmelon/Cucurbita ficifolia. Acta Bot Neerl 10: 466–473.Google Scholar
  9. de Stigter HCM (1966) Parallelism between the transport of 14C-photosynthates and the flowering response in grafted Silene armeria L. Z Pflanzenphysiol 55: 11–19.Google Scholar
  10. de Stigter HCM (1971a) Some aspects of the physiological functioning of the graft muskmelon/ Cucurbita ficifolia. I. Melon/Cucurbita versus cucumber/ Cucurbita: differences in behaviour due to differences in degree of compatibility. Z Pflanzenphysiol 65: 223–231.Google Scholar
  11. de Stigter HCM (1971b) Some aspects of the physiological functioning of the graft muskmelon/ Cucurbita ficifolia. III. Recovery in presence of limited quantities of stock foliage. Z Pflanzenphysiol 65: 281–295.Google Scholar
  12. Esau K (1965) Plant anatomy, 2nd edn. John Wiley & Sons, New York.Google Scholar
  13. Esau K (1969) The phloem. In: Zimmermann W, Ozenda P, Wulff HD (eds) Encyclopedia of plant anatomy, vol 5, pt. 2. Borntraeger, Berlin Stuttgart, 505 pp.Google Scholar
  14. Esau K (1977) Anatomy of seed plants, 2nd edn. John Wiley & Sons, New York.Google Scholar
  15. Esau K, Cheadle VI, Risley EB (1962) Development of sieve-plate pores. Bot Gaz 123:233–243.CrossRefGoogle Scholar
  16. Eschrich W (1953) Beiträge zur Kenntnis der Wundsiebröhrenentwicklung bei Impatiens Holsti. Planta 43: 37–74.CrossRefGoogle Scholar
  17. Evert RF, Deshpande BP, Eichhorn SE (1971) Lateral sieve-area pores in woody dicotyledons. Can J Bot 49:1509–1515.CrossRefGoogle Scholar
  18. Feucht W, Schmid PPS, Christ E (1983) Kompatibilität bei Prunus avium/Prunus cerasus — Veredlungen während der Verwachsungsphase. I. Die Struktur des Phloems einschließlich der Siebröhren. Gartenbauwissenschaft 48: 45–50.Google Scholar
  19. Funk R (1929) Untersuchungen über heteroplastische Transplantationen bei Solanaceen und Cactaceen. Beitr Biol Pflanzen 17: 404–468.Google Scholar
  20. Hardham AR, McCully ME (1982a) Reprogramming of cells following wounding in pea (Pisum sativum L.) roots. I. Cell division and differentiation of new vascular elements. Protoplasma 112: 143–151.CrossRefGoogle Scholar
  21. Hardham AR, McCully ME (1982b) Reprogramming of cells following wounding in pea (Pisum sativum L.) roots. II. The effects of caffeine and colchicine on the development of new vascular elements. Protoplasma 112: 152–166.CrossRefGoogle Scholar
  22. Hayward HE, Went FW (1939) Transplantation experiments with peas. II. Bot Gaz 100:788–801.CrossRefGoogle Scholar
  23. Herse F (1908) Beiträge zur Kenntnis der histologischen Erscheinungen bei der Veredelung der Obstbäume. Landwirtschaftl Jahrb 37: 71–136.Google Scholar
  24. Jeffree CE, Yeoman MM (1983) Development of intercellular connections between opposing cells in a graft union. New Phytol 93: 491–509.CrossRefGoogle Scholar
  25. Jones MGK (1976) The origin and development of plasmodesmata. In: Gunning BES, Robards AW (eds) Intercellular communication in plants: studies on plasmodesmata. Springer, Berlin Heidelberg New York, pp 81–103.CrossRefGoogle Scholar
  26. Kollmann R (1975) Sieve element structure in relation to function. In: Aronoff S, Dainty J, Gorham PR, Srivastava LM, Swanson CA (eds) Phloem transport. Plenum, New York, pp 225–242.Google Scholar
  27. Kollmann R, Dörr I (1987) Parasitische Blütenpflanzen. Naturwissenschaften 74: 12–21.CrossRefGoogle Scholar
  28. Kollmann R, Glockmann C (1985) Studies on graft unions. I. Plasmodesmata between cells of plants belonging to different unrelated taxa. Protoplasma 124: 224–235.CrossRefGoogle Scholar
  29. Kollmann R, Dörr I, Schulz A, Behnke HD (1983) Funktionelle Differenzierung der Assimilat-leitbahnen. Ber Dtsch Bot Ges 96: 117–132.Google Scholar
  30. Kollmann R, Yang S, Glockmann C (1985) Studies on graft unions. II. Continuous and half plasmodesmata in different regions of the graft interface. Protoplasma 126: 19–29.CrossRefGoogle Scholar
  31. Krenke NP (1933) Wundkompensation, Transplantation und Chimären bei Pflanzen. Springer, Berlin.Google Scholar
  32. Küster E (1925) Pathologische Pflanzenanatomie, 3rd edn. Fischer, Jena.Google Scholar
  33. LaMotte CE, Jacobs WP (1962) Quantitative estimation of phloem regeneration in Coleus internodes. Stain Tech 37: 63–73.Google Scholar
  34. LaMotte CE, Jacobs WP (1963) A role of auxin in phloem regeneration in Coleus internodes. Dev Biol 8: 80–98.CrossRefGoogle Scholar
  35. Lindsay DW, Yeoman MM, Brown R (1974) An analysis of the development of the graft union in Lycopersicon esculentum. Ann Bot (London) 38: 639–646.Google Scholar
  36. Lipetz J (1970) Wound healing in higher plants. Int Rev Cytol 27: 1–28.CrossRefGoogle Scholar
  37. McCully ME (1983) Structural aspects of graft development. In: Moore R (ed) Vegetative compatibility responses in plants. Baylor Univ Press, Waco, Texas, pp 71–88.Google Scholar
  38. Monzer J, Kollmann R (1986) Vascular connections in the heterograft Lophophora williamsii Coult. on Trichocereus spachianus Ricc. J Plant Physiol 123: 359–372.Google Scholar
  39. Moore R (1982) Graft formation in Kalanchoe blossfeldiana. J Exp Bot 33: 533–540.CrossRefGoogle Scholar
  40. Moore R (1983) Physiological aspects of graft formation. In: Moore R (ed) Vegetative compatibility responses in plants. Baylor Univ Press, Waco, Texas, pp 89–105.Google Scholar
  41. Moore R (1984a) Graft formation in Solarium pennellii (Solanaceae). Plant Cell Rep 3:172–175.CrossRefGoogle Scholar
  42. Moore R (1984b) The role of direct cellular contact in the formation of compatible autografts in Sedum telephoides. Ann Bot (London) 54:127–133.Google Scholar
  43. Moore R, Walker DB (1981) Studies of vegetative compatibility — incompatibility in higher plants. I. A structural study of a compatible autografi in Sedum telephoides (Crassulaceae). Am J Bot 68: 820–830.CrossRefGoogle Scholar
  44. Muzik TJ, La Rue CD (1954) Further studies on the grafting of monocotyledons. Am J Bot 41:448–455.CrossRefGoogle Scholar
  45. Rachow-Brandt G (1987) Vergleichende transportphysiologische Untersuchungen an Pfropflingen unterschiedlicher Kompatibilität. Thesis, Univ Kiel.Google Scholar
  46. Robbertse PJ, McCully ME (1979) Regeneration of vascular tissue in wounded pea roots. Planta 145: 167–173.CrossRefGoogle Scholar
  47. Schmid PPS, Feucht W (1986) Carbohydrates in the phloem of Prunus avium/Prunus cerasus graftings and of homospecific controls. Angew Bot 60: 201–208.Google Scholar
  48. Schmid PPS, Bartscherer HC, Feucht W (1984) Ultrastructural localization of polyphenols in the sieve tubes of Prunus avium L. by ferric chloride. Sci Hortic 22: 105–111.CrossRefGoogle Scholar
  49. Schulz A (1986a) Wound phloem in transition to bundle phloem in primary roots of Pisum sativum L. I. Development of bundle-leaving wound-sieve tubes. Protoplasma 130: 12–26.CrossRefGoogle Scholar
  50. Schulz A (1986b) Wound phloem in transition to bundle phloem in primary roots of Pisum sativum L. II. The plasmatic contact between wound-sieve tubes and regular phloem. Protoplasma 130: 27–40.CrossRefGoogle Scholar
  51. Sharples A, Gunnery H (1933) Callus formation in Hibiscus Rosa sinensis L. and Hevea brasiliensis Müll. Arg. Ann Bot (London) 47: 837–840.Google Scholar
  52. Shimomura T, Fuzihara K (1977) Physiological study of graft union formation in cactus. II. Role of auxin on vascular connection between stock and scion. J Jpn Soc Hortic Sci 45:397–406.Google Scholar
  53. Silberschmidt K (1933) Beiträge zur Kenntnis der Stoffwechselgemeinschaft zwischen Pfropfpartnern. Planta 19: 729–780.CrossRefGoogle Scholar
  54. Silberschmidt K (1935/36) Die Abhängigkeit des Pfropferfolges von der systematischen Verwandtschaft der Partner. Z Bot 29: 65–137.Google Scholar
  55. Simon S (1908) Experimentelle Untersuchungen über die Entstehung von Gefäßverbindungen. Ber Dtsch Bot Ges 26: 364–396.Google Scholar
  56. Simon S (1930) Transplantationsversuche zwischen Solarium melongena und Iresine Lindeni. Jahrb Wiss Bot 72: 137–160.Google Scholar
  57. Stoddard FL, McCully ME (1979) Histology of the development of the graft union in pea roots. Can J Bot 57:1486–1501.CrossRefGoogle Scholar
  58. Stoddard FL, McCully ME (1980) Effects of excision of stock and scion organs on the formation of the graft union in Coleus: a. histological study. Bot Gaz 141: 401–412.CrossRefGoogle Scholar
  59. Tiedemann R (1986) Struktur und Funktion der Phloemverbindungen zwischen Reis und Unterlage beim Pfropfling Cucumis sativus auf Cucurbita ficifolia. Thesis, Univ Kiel.Google Scholar
  60. Tiedemann R (1989) Graft union development and symplastic phloem contact in the heterograft Cucumis sativus on Cucurbita ficifolia. J Plant Physiol 134: 427–440.Google Scholar
  61. Thompson NP (1967) The time course of sieve tube and xylem cell regeneration and their anatomical orientation in Coleus. Am J Bot 54: 588–595.CrossRefGoogle Scholar
  62. Thompson NP, Jacobs WP (1966) Polarity of IAA effect on sieve-tube and xylem regeneration in Coleus and tomato stems. Plant Physiol 41: 673–682.PubMedCrossRefGoogle Scholar
  63. Vöchting H (1892) Über Transplantation am Pflanzenkörper. Untersuchungen zur Physiologie und Pathologie. Laupp, Tübingen.Google Scholar
  64. von Kaan-Albest A (1934) Anatomische und physiologische Untersuchungen über die Entstehung von Siebröhrenverbindungen. Z Bot 27: 1–94.Google Scholar
  65. Warren Wilson J, Warren Wilson PM (1981) The position of cambia regenerating in grafts between stems and abnormally-oriented petioles. Ann Bot (London) 47: 473–484.Google Scholar
  66. Wetmore RH, Rier JP (1963) Experimental induction of vascular tissues in callus of angiosperms. Am J Bot 50: 418–430.CrossRefGoogle Scholar
  67. Yeoman MM (1984) Cellular recognition systems in grafting. In: Pirson A, Zimmermann MH (eds) Encyclopedia of plant physiology, vol 11. Cellular interactions. NS. Springer, Berlin Heidelberg New York, pp 453–472.Google Scholar
  68. Yeoman MM, Kilpatrick DC, Miedzybrodzka MB, Gould AR (1978) Cellular interactions during graft formation in plants; a recognition phenomenon? Symp Soc Exp Biol 32:139–160.PubMedGoogle Scholar
  69. Zee SY (1969) Fine structure of the differentiating sieve elements of Vicia faba. Aust J Bot 17:441–456.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Rainer Kollmann
  • Christl Glockmann

There are no affiliations available

Personalised recommendations