Soil Acidity pp 183-202 | Cite as

Effects of Soil Acidity on Plant Associations

  • M. Runge
  • M. W. Rode

Abstract

The dependence of vegetation on soil acidity is a conspicuous phenomenon in humid climates that has been described in a vast number of publications. Most striking is the difference in vegetation between soils rich in calcium carbonate with pH ≧ 6 [CO2/carbonate-buffer range, according to Ulrich (1981)] and soils poor in calcium, with pH ≦ 4 (aluminium- and iron-buffer range). Only very few plant species grow equally well in both buffer ranges. Species occurring exclusively in the former range are known as calcicole and species occurring only in the latter range are known as calcifuge (Hope Simpson 1938). In comparison to these extreme groups the majority of species displays a more or less intermediate occurrence. A closer examination reveals, however, that even these species can be grouped according to their respective distribution within the whole pH-span of humid climate soils (Ellenberg 1979). This means, on the other hand, that these groupings make it possible to use species or plant associations as indicators of soil acidity.

Keywords

Biomass Permeability Toxicity Corn Europe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams F, Lund ZF (1966) Effect of chemical activity of soil solution on cotton root penetration of acid subsoils. Soil Sci 101:193–198CrossRefGoogle Scholar
  2. Albert R (1982) Halophyten. In: Kinzel H (ed) Pflanzenökologie und Mineralstoffwechsel. Ulmer, Stuttgart, pp 33–204Google Scholar
  3. Alva AK, Edwards DG, Asher CJ, Blarney FPC (1986) Effects of P:Al molar ratio and calcium concentration on plant response to aluminium toxicity. Soil Sci Soc Am J 50:133–137CrossRefGoogle Scholar
  4. Bauch J, Schröder W (1982) Zellulärer Nachweis einiger Elemente in den Feinwurzeln gesunder und erkrankter Tannen (Abies alba Mill.) und Fichten (Picea abies (L.) Karst.). Forstwiss Centralbl 101:285–294CrossRefGoogle Scholar
  5. Blarney FPC, Edwards DG, Asher CJ (1983) Effects of aluminium, OH:Al and P:Al molar ratios, and ionic strength on soybean root elongation in solution culture. Soil Sci 136:197–207CrossRefGoogle Scholar
  6. Bogner W (1968) Experimentelle Prüfung von Waldbodenpflanzen auf ihre Ansprüche an die Form der Stickstoff-Ernährung. Mitt Ver Forstl Standortskd Forstpflanzenzücht 18:3–45Google Scholar
  7. Bradshaw AD, Lodge RW, Jowett D, Chadwick MJ (1958) Experimental investigations into the mineral nutrition of several grass species. Part I: calcium level. J Ecol 46:749–757CrossRefGoogle Scholar
  8. Caldwell CR, Haug A (1982) Divalent cation inhibition of barley root plasma membrane-bound Ca2 + -ATPase activity and its reversal by monovalent cations. Physiol Plant 54:112–118CrossRefGoogle Scholar
  9. Clarkson DT (1965) The effect of aluminium and some other trivalent metal cations on cell division in the root apices of Allium cepa. Ann Bot 29/114:309–315Google Scholar
  10. Clarkson DT (1966) Aluminium tolerance in species within the genus Agrostis. J Ecol 54:167–178CrossRefGoogle Scholar
  11. Clymo RS (1962) An experimental approach to part of the calcicole problem. J Ecol 50:707–731CrossRefGoogle Scholar
  12. Cramer GR, Läuchli A, Polito VS (1985) Displacement of Ca2+ by Na+ from the plasmalemma of root cells. A primary response to salt stress? Plant Physiol 79:207–211PubMedCrossRefGoogle Scholar
  13. Ellenberg H (1958) Bodenreaktion (einschließlich Kalkfrage). In: Ruhland W (ed) Handbuch der Pflanzenphysiologie IV. Springer, Berlin Göttingen Heidelberg, pp 638–708Google Scholar
  14. Ellenberg H (1979) Zeigerwerte der Gefäßpflanzen Mitteleuropas. Scr Geobot IX, 2. Aufl, Goltze KG, GöttingenGoogle Scholar
  15. Evers FH (1964) Die Bedeutung der Stickstofform für Wachstum und Ernährung der Pflanzen, insbesondere der Waldbäume. Mitt Ver Forstl Standortskd Forstpflanzenzücht 14:19–37Google Scholar
  16. Fluri M (1909) Der Einfluß von Aluminiumsalzen auf das Protoplasma. Flora 99:81–126Google Scholar
  17. Foy CD (1974) Effects of aluminium. In: Carson EW (ed) The plant root and its environment. Univ Press Virginia, Charlottesville, pp 603–642Google Scholar
  18. Foy CD (1983) Plant adaptation to mineral stress in problem soils. Iowa State J Res 57:339–354Google Scholar
  19. Foy CD, Burns GR, Brown JC, Fleming AL (1965) Differential aluminium tolerance of two wheat varieties associated with plant-induced pH-changes around their roots. Soil Sci Soc Am Proc 29:64–67CrossRefGoogle Scholar
  20. Foy CD, Fleming AL, Burns GR, Armiger WR (1967) Characterization of differential aluminium-tolerance among varieties of wheat and barley. Soil Sci Soc Am Proc 31:513–521CrossRefGoogle Scholar
  21. Foy CD, Fleming AL, Armiger WH (1969) Aluminium tolerance of soybean varieties in relation to calcium nutrition. Agron J 61:505–511CrossRefGoogle Scholar
  22. Foy CD, Chaney RL, White MC (1978) The physiology of metal toxicity of plants. Ann Rev Plant Physiol 29:511–566CrossRefGoogle Scholar
  23. Gigon A, Rorison IH (1972) The response of some ecologically distinct plant species to nitrate- and ammonium-nitrogen. J Ecol 60:93–102CrossRefGoogle Scholar
  24. Godbold DL, Fritz E, Hüttermann A (1988) Aluminium toxicity and forest decline. Proc Natl Acad Sci USA 85:3888–3892PubMedCrossRefGoogle Scholar
  25. Grothus R (1986) Wachstum und Nährstoffaufnahme calcicoler und calcifuger Arten in Abhängigkeit vom Calcium-Gehalt des Substrats. Diplomarbeit Syst Geobot Inst Univ Göttingen (unpubl)Google Scholar
  26. Häussling M, Leisen E, Marschner H, Römheld V (1985) An improved method for non-destructive measurements of the pH at the root-soil interface (rhizosphere). J Plant Physiol 117:371–375Google Scholar
  27. Hanson JB (1984) The functions of calcium in plant nutrition. In: Tinker PB, Läuchli A (eds) Advances in plant nutrition 1. Praeger Sei, NY, pp 149–208Google Scholar
  28. Harrison-Murray RS, Clarkson DT (1973) Relationships between structural development and the absorption of ions by the root system of Cucurbita pepo. Planta 114:1–16CrossRefGoogle Scholar
  29. Hartwell BL, Pember FR (1918) The presence of aluminium as a reason for the difference in the effect of so-called acid soil on barley and rye. Soil Sci 6:259–277CrossRefGoogle Scholar
  30. Haug A (1984) Molecular aspects of aluminium toxicity. Crit Rev Plant Sci 1,I.4:345–373CrossRefGoogle Scholar
  31. Hope Simpson JF (1938) A chalk flora on the lower greensand: its use in interpreting the calcicole habit. J Ecol 26:218–235CrossRefGoogle Scholar
  32. Horst WJ, Wagner A, Marschner H (1983) Effect of aluminium on root growth, cell-division rate and mineral element contents in roots of Vigna unguiculata genotypes. Z Pflanzenphysiol 109:95–103Google Scholar
  33. Huett DO, Menary RC (1980) Aluminium distribution in freeze-dried roots of cabbage, lettuce and kikuyu grass by energy-dispersive X-ray analysis. Aust J Plant Physiol 7:101–111CrossRefGoogle Scholar
  34. Ingestad T, Lund A-B (1986) Theory and techniques for steady state mineral nutrition and growth of plants. Scand J For Res I:439–453CrossRefGoogle Scholar
  35. Jefferies RL, Willis AJ (1964) Studies on the calcicole-calcifuge habit. II. The influence of calcium on the growth and establishment of four species in soil and sand cultures. J Ecol 52:691–707CrossRefGoogle Scholar
  36. Kent LM, Läuchli A (1985) Germination and seedling growth of cotton: salinity-calcium interactions. Plant Cell Environ 8:155–159CrossRefGoogle Scholar
  37. Kiehne U (1986) Wachstum und Nährstoffaufnahme calcicoler und calcifuger Arten in Abhängigkeit vom pH-Wert des Substrats. Diplomarbeit Syst Geobot Inst Univ Göttingen (unpubl)Google Scholar
  38. Kinzel H (1982) Pflanzenökologie und Mineralstoffwechsel. Ulmer, StuttgartGoogle Scholar
  39. Kinzel H (1983) Influence of limestone, silicates and soil pH on vegetation. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology. III. Encycl Plant Physiol New Ser, Springer, Berlin Heidelberg New York, 12C:201–244CrossRefGoogle Scholar
  40. Kuiper D, Kuiper PJC (1978) Lipid composition of the roots of Plantago species: response to alteration of the level of mineral nutrition and ecological significance. Physiol Plant 44:81–87CrossRefGoogle Scholar
  41. La Haye PA, Epstein E (1969) Salt toleration by plants: enhancement with calcium. Science 166:395–396CrossRefGoogle Scholar
  42. Lance JC, Pearson RW (1969) Effect of low concentrations of aluminium on growth and water and nutrient uptake by cotton roots. Soil Sci Soc Am Proc 33:95–98CrossRefGoogle Scholar
  43. Le Gales Y, Lamant A, Heller R (1980) Fixation du calcium par les fractions macromoléculaires solubles isolées à partir de végétaux supérieurs. Physiol Vég 18:431–441Google Scholar
  44. Legge RL, Thompson JE, Baker JE, Lieberman M (1982) The effect of Ca on fluidity and phase properties of microsomal membranes isolated from postclimacteric Golden Delicious apples. Plant Cell Physiol 23:161–169Google Scholar
  45. Loneragan JF, Snowball K (1969) Calcium requirement of plants. Austr J Agric Res 20:465–478CrossRefGoogle Scholar
  46. Lund ZF (1970) The effect of calcium and its relation to several cations in soybean root growth. Soil Sci Soc Am Proc 34:456–459CrossRefGoogle Scholar
  47. Marschner H, Mengel K (1966) Der Einfluß von Ca- und H-Ionen bei unterschiedlichen Stoffwechselbedingungen auf die Membranpermeabilität junger Gerstenwurzeln. Z Pflanzenernähr Düng Bodenkd 112:39–49CrossRefGoogle Scholar
  48. Marschner H, Römheld V, Ossenburg-Neuhaus H (1982) Rapid method for measuring changes in pH and reducing processes along roots of intact plants. Z Pflanzenphysiol 105:407–416Google Scholar
  49. Matsumoto H, Hirasawa E, Torikai H, Takahashi E (1976) Localization of absorbed aluminium in pea root and its binding to nucleic acids. Plant Cell Physiol 19(3):429–436Google Scholar
  50. Matsumoto H, Morimura S, Takahashi E (1977a) Less involvement of pectin in the precipitation of aluminium in pea root. Plant Cell Physiol 18:325–335Google Scholar
  51. Matsumoto H, Morimura S, Takahashi E (1977b) Binding of aluminium to DNA of DNP in pea root. Plant Cell Physiol 18:987–993Google Scholar
  52. Matzner E (1987) Der Stoffumsatz zweier Waldökosysteme im Soiling. Habil-Schrift, Forstwiss Fachb, Univ GöttingenGoogle Scholar
  53. Moore DP (1974) Physiological aspects of pH on roots. In: Carson EW (ed) The plant root and its environment. Univ Press Virginia, Charlottesville, pp 135–151Google Scholar
  54. Morimura S, Matsumoto H (1978) Effect of aluminium on some properties and template activity of purified pea DNA. Plant Cell Physiol 19(3):429–436Google Scholar
  55. Morimura S, Takahashi E, Matsumoto H (1978) Association of aluminium with nuclei and inhibition of cell division in onion (Allium cepa) roots. Z Pflanzenphysiol 88:395–401Google Scholar
  56. Mugwira LM, Patel SU (1977) Root zone pH-changes and ion uptake imbalances by triticale, wheat and rye. Agron J 69:719–722CrossRefGoogle Scholar
  57. Murach D, Matzner E The influence of soil acidification on root growth of Norway spruce (Picea abies, Karst.) and European beech (Fagus silvatica L.). IUFRO workshop “Woody plant growth in a changing chemical and physical environment”, Vancouver (in press)Google Scholar
  58. Nair ND, Prenzel J (1978) Calculations of equilibrium concentrations of mono- and polynuclear hydroxyl-aluminium species at different pH and total aluminium concentrations. Z Pflanzenernaehr Bodenkd 141:741–751CrossRefGoogle Scholar
  59. Neitzke M (1984) Der Einfluß von Aluminium auf die Keimung und Keimlingsentwicklung der Buche (Fagus sylvatica L.) unter Berücksichtigung von Wechselwirkungen mit Calcium und Stickstoffform. Diss Fachb Biol, Univ MünsterGoogle Scholar
  60. Neitzke M, Runge M (1985) Keimlings- und Jungpflanzenentwicklung der Buche (Fagus sylvatica L.) in Abhängigkeit vom Al/Ca-Verhältnis des Bodenextraktes. Flora 177:237–249Google Scholar
  61. Oursel A, Lamant A, Salsac L, Mazliak P (1973) Etude comparée des lipides et de la fixation passive du calcium dans les racines et les fractions subcellulaires du Lupinus luteus et de la Vicia faba. Phytochemistry 12:1865–1874CrossRefGoogle Scholar
  62. Pavan MA, Bingham FT (1982) Toxicity of aluminium to coffee seedlings grown in nutrient solutions. Soil Sci Soc Am J 46:993–997CrossRefGoogle Scholar
  63. Pavan MA, Bingham FT, Pratt PF (1982) Toxicity of aluminium to coffee in Utisols and Oxisols with CaCo3 and CaSO4 • 2H2O. Soil Sci Soc Am J 46:1201–1207CrossRefGoogle Scholar
  64. Raven JA, Smith FA (1976) Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation. New Phytol 76:415–431CrossRefGoogle Scholar
  65. Rhue RD, Grogan CO (1977) Screening corn for Al tolerance using different Ca and Mg concentrations. Agron J 69:755–760CrossRefGoogle Scholar
  66. Robson AD, Pitman MG (1983) Interactions between nutrients in higher plants. In: Läuchli A, Bieleski RL (eds) Inorganic plant nutrition. Encycl Plant Physiol New Ser, Springer, Berlin Heidelberg New York 15A: 147–180CrossRefGoogle Scholar
  67. Rode MW (1988) Die Aluminium-Toleranz von Arten basischer bis mäßig saurer und saurer Böden in Abhängigkeit von der Stickstoff-Form und vom Phosphat-Angebot. Ber Forschungszentrums Waldökosysteme Waldsterben A, Bd 35, 161 sGoogle Scholar
  68. Rorison IH (1965) The effect of aluminium on the uptake and incorporation of phosphate by excised sainfoin roots. New Phytol 64:23–27CrossRefGoogle Scholar
  69. Rost-Siebert K (1985) Untersuchungen zur H- und Al-Ionen-Toxicität an Keimpflanzen von Fichte (Picea abies, Karst.) und Buche (Fagus sylvatica, L.) in Lösungskultur. Diss Forstl Fak, Univ GöttingenGoogle Scholar
  70. Rothert W (1906) Das Verhalten der Pflanzen gegenüber Aluminium. Bot Z 64:47Google Scholar
  71. Runge M (1983) Physiology and ecology of nitrogen nutrition. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology III. Encycl Plant Physiol, Springer, Berlin Heidelberg New York, 12C: 163–200CrossRefGoogle Scholar
  72. Schierl R, Göttlein A, Hohmann E, Trübenbach D, Kreutzer K (1986) Einfluß von saurer Beregnung und Kalkung auf Humusstoffe sowie die Aluminium- und Schwermetalldynamik in wässrigen Bodenextrakten. Forstwiss Centralbl 105:309–313CrossRefGoogle Scholar
  73. Siegel N, Haug A (1983) Calmodulin-dependent formation of membrane potential in barley root plasma membrane vesicles; a biochemical model of aluminium toxicity in plants. Physiol Plant 59:285–291CrossRefGoogle Scholar
  74. Skeen JR (1929) The tolerance limit of seedlings for aluminium and iron and the antagonism of calcium. Soil Sci 27:69–80CrossRefGoogle Scholar
  75. Sörensen SPL (1909) Enzymstudien II. Medd Carlsberg Lab KöbenhavnGoogle Scholar
  76. Ulrich B (1981) Ökologische Gruppierung von Böden nach ihrem chemischen Bodenzustand. Z Pflanzenernaehr Bodenkd 144:289–305CrossRefGoogle Scholar
  77. Vierstra R, Haug A (1978) The effect of Al3+ on the physical properties of membrane lipids in Thermoplasma acidophilum. Biochem Biophys Res Commun 84:138–143PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • M. Runge
  • M. W. Rode
    • 1
  1. 1.Systematisch-Geobotanisches Institut der Universität Untere Karspüle 2GöttingenGermany

Personalised recommendations