Skip to main content

The Chemistry of Aluminium, Iron and Manganese Oxides in Acid Soils

  • Chapter
Soil Acidity

Abstract

The oxides of aluminium, iron and manganese, particularly the poorly crystallized and microcrystalline forms, are undoubtedly the most reactive components of acidic soils. The elements are initially liberated into solution as cations by acidic weathering of soil minerals, and then reprecipitated, either locally or after translocation, as hydrous oxide species of high specific surface area and reactivity. These precipitates can be readily remobilized to produce sudden flushes of the elements into the soil solution, so that a consideration of the factors that control their solubility forms a major part of this review. Since aluminium occurs exclusively in the trivalent form, only pH and complex formation affect the solubility of its oxides; but with iron and manganese more than one valency state may be involved, and redox potential must also be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson HA, Berrow ML, Farmer VC, Hepburn A, Russell JD, Walker AD (1982) A reassessment of podzol formation processes. J Soil Sci 33:125–136

    Article  CAS  Google Scholar 

  • Arrhenius GO, Tsai A (1981) Structure, phase transformation and prebiotic catalysis in marine manganate minerals. Scripps Inst Oceanogr Ref Ser 81-28:1–19

    Google Scholar 

  • Barnhisel RI (1977) Chlorites and hydroxy interlayered vermiculite and smectite. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Sci Soc Am, Wisconsin, p 331

    Google Scholar 

  • Bartoli F, Jeanroy E, Vedy JC (1981) Transport and redistribution of silicon, aluminium and iron in podzols: role of inorganic compounds and mineral carriers. Colloq Int CNRS 303:281–289

    Google Scholar 

  • Berrow ML, Mitchell RL (1980) Location of trace elements in soil profiles: total and extractable contents of individual horizons. Trans R Soc Edinb Earth Sci 71:103–121

    Article  CAS  Google Scholar 

  • Birnie AC (1984) Morphological, physical and chemical changes occurring within a hydrosequence of soils of the Strichen Association. M Sc Thesis, Univ Aberdeen

    Google Scholar 

  • Borggaard OK (1983) The influence of iron oxides on phosphate adsorption by soil. J Soil Sci 34:333–341

    Article  CAS  Google Scholar 

  • Bricker O (1965) Some stability relations in the system Mn-O2-H2O at 25 °C and-one atmosphere total pressure. Am Miner 50:1296–1354

    CAS  Google Scholar 

  • Brinkman R (1977) Surface-water gley soils in Bangladesh: genesis. Geoderma 17:111–114

    Article  CAS  Google Scholar 

  • Brydon JE, Clark JS, Osborne V (1961) Dioctahedral chlorite. Clay Miner 6:595–609

    CAS  Google Scholar 

  • Burns RG, Burns VM (1979) Manganese oxides. In: Burns RG (ed) Marine minerals. Miner Soc Am Washington DC, p 1

    Google Scholar 

  • Childs CW, Leslie DM (1977) Interelement relationships in iron-manganese concretions from a catenary sequence of yellow-grey earth soils in loess. Soil Sci 123:369–376

    Article  CAS  Google Scholar 

  • Chukhrov FV, Gorshkov AI (1981) Iron and manganese oxide minerals in soils. Trans R Soc Edinb Earth Sci 72:195–200

    Article  CAS  Google Scholar 

  • Chukhrov FV, Gorshkov AI, Rudnitskaya ES, Beresovskaya VV, Sivtsov AV (1980) Manganese minerals in clays: a review. Clays Clay Miner 28:346–354

    Article  CAS  Google Scholar 

  • Driscoll CT, Baker JP, Bisogni JJ, Schofield CL (1984) Aluminium speciation in dilute acidified surface waters of the Adirondack region of New York State. In: Bricker OP (ed) Geological aspects of acid precipitation. Ann Arbor Sei, Ann Arbor, MI Acid Precipitation Ser 7:55

    Google Scholar 

  • Driscoll CT, van Breeman N, Mulder J (1985) Aluminium chemistry in a forested spodosol. Soil Sci Soc Am J 49:437–444

    Article  CAS  Google Scholar 

  • Evans LT, Russell EW (1959) The adsorption of humic and fulvic acids by clays. J Soil Sci 10:119–132

    Article  CAS  Google Scholar 

  • Farmer VC (1982) Significance of the presence of allophane and imogolite in podzol Bs horizons for podzolization mechanisms: a review. Soil Sci Plant Nutr 28:571–578

    CAS  Google Scholar 

  • Farmer VC (1984) Distribution of allophane and organic matter in podzol B horizons. Reply to Buurman and Van Reeuvijk. J Soil Sci 35:452–458

    Google Scholar 

  • Farmer VC (1987a) Natural and synthetic allophane and imogolite: a synergistic relationship. Trans 13th Congr Int Soc Soil Sci 5:63–68

    Google Scholar 

  • Farmer VC (1987b) The role of inorganic species in the transport of aluminium in podzols. In: Righi D, Chauvel A (eds) Podzols and podzolization. Assoc Franc Etude Sol, Plaisir, pp 187–194

    Google Scholar 

  • Farmer VC, Fraser AR (1982) Chemical and colloidal stability of sols in the Al2O3-Fe2O3-SiO2 -H2O system: their role in podzolization. J Soil Sci 33:737–742

    Article  CAS  Google Scholar 

  • Farmer VC, Russell JD, Smith BFL (1983) Extraction of inorganic forms of translocated Al, Fe and Si from a podzol Bs horizon. J Soil Sci 34:571–576

    Article  CAS  Google Scholar 

  • Farmer VC, Smith BFL, Wilson MJ, Loveland P, Payton RW (1988) Readily-extractable hydroxy-aluminium interlayers in clay and silt-sized vermiculite. Clay Miner 23:271–277

    Article  CAS  Google Scholar 

  • Feitknecht W, Marti W (1945) Über Manganite und Künstlichen Braunstein. Helv Chim Acta 28:149–156

    Article  CAS  Google Scholar 

  • Frinck CR (1965) Characterization of aluminium interlayers in soil clays. Soil Sci Soc Am Proc 29:379–382

    Article  Google Scholar 

  • Giovanoli R (1980a) Vernadite is random-stacked birnessite. Miner Deposita (Berlin) 15:251–253

    CAS  Google Scholar 

  • Giovanoli R (1980b) On natural and synthetic manganese nodules. In: Varentsov IM, Grasselly GY (eds) Geology and geochemistry of manganese, Vol 1. Akademiai Kiado, Budapest, p 159

    Google Scholar 

  • Giovanoli R (1985) Layer structures and tunnel structures in manganates. Chem Erde 44:227–244

    CAS  Google Scholar 

  • Giovanoli R, Balmer B (1981) A new synthesis of hollandite. A possibility for immobilization of nuclear waste. Chimia 35:53–54

    CAS  Google Scholar 

  • Giovanoli R, Balmer B (1983) Darstellung und Reaktionen von Psilomelane (Romanechit) Ba2Mn15O30 • 4H2O. Chimia 37:424–427

    CAS  Google Scholar 

  • Giovanoli R, Stahli E, Feitknecht W (1970) Über die Oxidhydroxide des vierwertigen Mangans mit Schichtengitter. 1. Mitteilung: Natriummangan (II,III)manganat(IV). Helv Chim Acta 53:209–220

    Article  CAS  Google Scholar 

  • Glasby GP (1975) Limitations of crystal field theory applied to sedimentary systems. Geoderma 13:363–367

    Article  CAS  Google Scholar 

  • Golden DC, Chen CC, Dixon JB (1986) Synthesis of todorokite. Science 231:717–719

    Article  PubMed  CAS  Google Scholar 

  • Goodman BA, Cheshire MW (1985) A Mössbauer effect study of the reduction of iron by fulvic acid. Int Humic Subst Soc, Volunteered Pap, 2nd Int Conf 1984, pp 187–188

    Google Scholar 

  • Goodman BA, Cheshire MV (1987) Characterization of iron-fulvic acid complexes using Mössbauer and EPR spectroscopy. Sci Total Environ 62:229–240

    Article  CAS  Google Scholar 

  • Hem JD (1968) Graphical methods for studies of aqueous aluminium hydroxides, fluoride and sulphate complexes. US Geol Surv Water Supply Pap 1827-B

    Google Scholar 

  • Hider RC, Mohd-Nor AR, Silver J, Morrison IEG, Rees LVC (1981) Model compounds for microbial iron-transport compounds. Part I. Solution chemistry and Mössbauer study of iron (II) and iron (III) complexes from phenolic and catecholic systems. J Chem Soc Dalton Trans 609–622

    Google Scholar 

  • Hingston FJ, Posner AM, Quirk JP (1972) Anion adsorption by goethite and gibbsite. 1. The role of the proton in determining adsorption envelopes. J Soil Sci 23:177–192

    Article  CAS  Google Scholar 

  • Iyengar SS, Zelazny LW, Martens DC (1981) Effect of photolytic oxalate treatment on soil hydroxyinterlayered vermiculites. Clays Clay Miner 29:429–434

    Article  CAS  Google Scholar 

  • Jeffries D, Stumm W (1976) The metal-adsorption chemistry of buserite. Can Miner 14:16:22

    Google Scholar 

  • Jenne ED (1968) Controls on Mn, Fe, Co, Ni, Cu and Zn concentrations in soils and water: the significant role of hydrous Mn and Fe oxides. Adv Chem Ser 73:337–387

    Article  Google Scholar 

  • Johnston JD, Cardile CM (1985) Iron sites in nontronite and the effect of interlayer cations from Mössbauer spectroscopy. Clays Clay Miner 33:295:300

    Google Scholar 

  • Jones D, Wilson MJ (1985) Chemical activity of lichens on mineral surfaces. Int Biodeterior 21:99–104

    CAS  Google Scholar 

  • Jones LHP, Milne AA (1956) Birnessite a new manganese oxide mineral from Aberdeenshire, Scotland. Mineral Mag 31:421–428

    Article  Google Scholar 

  • Karathanasis AD, Adams F, Hajek BF (1983) Stability relationships in kaolinite gibbsite and Al-hydroxyinterlayered vermiculite soil systems. Soil Sci Soc Am J 47:1247–1251

    Article  CAS  Google Scholar 

  • Kavanagh BV, Posner AM, Quirk JP (1977) The adsorption of phenoxyacetic acid herbicides on goethite. J Colloid Interface Sci 61:545–553

    Article  CAS  Google Scholar 

  • Kennedy JA, Powell HKJ (1985) Polyphenol interactions with aluminium (III) and iron (III): their possible involvement in the podzolization process. Aust J Chem 38:879–888

    Article  CAS  Google Scholar 

  • Levashkevich GA (1966) Interactions of humic acids with hydroxides of iron and aluminium. Pochvovedenie 4:58–65

    Google Scholar 

  • Lindsay WL (1979) Chemical equilibria in soils. Wiley-Intersci, NY

    Google Scholar 

  • Lindsay WL, Schwab AP (1982) The chemistry of iron in soils and its availability to plants. J Plant Nutr 5:821–840

    Article  CAS  Google Scholar 

  • Loganathan P, Burau RG (1973) Sorption of heavy metal ions by a hydrous manganese oxide. Geochim Cosmochim Acta 37:1277–1293

    Article  CAS  Google Scholar 

  • Loganathan P, Burau RG, Fuerstenau DW (1977) Influence of pH on the sorption of Co2+, Zn2 + and Ca2+ by a hydrous manganese oxide. Soil Sci Soc Am J 41:57–62

    Article  CAS  Google Scholar 

  • Lund CJ, Hem JD (1975) Effects of organic solutes on chemical reactions of aluminium. US Geol Surv Water Supply Pap 1827-G

    Google Scholar 

  • Lynn WC, Whittig LD (1966) Alteration and formation of clay minerals during cat clay development. Clays Clay Miner 14:241–248

    Article  CAS  Google Scholar 

  • McBride MB, Goodman BA, Russell JD, Fraser AR, Farmer VC, Dickson DPE (1983) Characterization of iron in alkaline EDTA and NH4OH extracts of podzols. J Soil Sci 34:825–840

    Article  CAS  Google Scholar 

  • McKenzie RM (1970) The reaction of cobalt with manganese dioxide minerals. Aust J Soil Res 8:97–106

    Article  CAS  Google Scholar 

  • McKenzie RM (1971) The synthesis of birnessite, cryptomelane and some other oxides and hydroxides of manganese. Mineral Mag 38:493–502

    Article  CAS  Google Scholar 

  • McKenzie RM (1972) The sorption of some heavy metals by the lower oxides of manganese. Geoderma 8:29–35

    Article  CAS  Google Scholar 

  • McKenzie RM (1975) Limitations of crystal field theory applied to sedimentary systems — a reply. Geoderma 13:369–372

    Article  CAS  Google Scholar 

  • Malcolm RL, Nettleton WD, McCracken RJ (1968) Pedogenic formation of montmorillonite from a 2:1–2:2 intergrade mineral. Clays Clay Miner 16:405–414

    Article  Google Scholar 

  • Martell AE, Smith RM (1977) Critical stability constants. Other organic ligands, Vol 3. Plenum Press, NY

    Google Scholar 

  • May HM, Helmke PA, Jackson ML (1979) Gibbsite solubility and thermodynamic properties of hydroxyaluminium ions in aqueous solutions at 25 °C. Geochim Acta 43:861–868

    Article  CAS  Google Scholar 

  • Mott CJB (1981) Anion and ligand exchange. In: Greenland DJ, Hayes MGB (eds) The chemistry of soil processes. Wiley, Chichester, p 179

    Google Scholar 

  • Murray JW (1974) The surface chemistry of hydrous manganese dioxide. J Colloid Interface Sci 46:357–371

    Article  CAS  Google Scholar 

  • Murray JW (1975) The interaction of metal ions at the manganese dioxide-solution interface. Geochim Cosmochim Acta 35:509–519

    Google Scholar 

  • Murray JW, Dillard JG (1979) The oxidation of cobalt (II) adsorbed on manganese dioxide. Geochim Cosmochim Acta 43:781–787

    Article  CAS  Google Scholar 

  • Nash VE (1963) Chemical and mineralogical properties of an Orangeburg profile. Soil Sci Soc Am Proc 27:688–693

    Article  CAS  Google Scholar 

  • Niederbudde EA, Ruelicke G (1981) Transformation of Al-chlorites by liming. Z Planzenernähr Bodenkd 144:127–135

    Article  CAS  Google Scholar 

  • Norvell WA, Lindsay WL (1982) Estimation of the concentration of Fe3+ and the (Fe3+) (OH-)3 ion product from equilibria of EDTA in soils. Soil Sci Soc Am J 46:710–715

    Article  CAS  Google Scholar 

  • Ostwald J (1984) Two varieties of lithiophorite in some Australian deposits. Mineral Mag 48:383–388

    Article  CAS  Google Scholar 

  • Parfitt RL, Atkinson RJ (1976) Phosphate adsorption on goethite. Nature (Lond) 264:740–742

    Article  CAS  Google Scholar 

  • Parks GA, De Bruyn PL (1962) The zero point of charge of oxides. J Phys Chem 66:967–972

    Article  CAS  Google Scholar 

  • Pena F, Torrent J (1984) Relationships between phosphate sorption and iron oxides in Alfisols from a river terrace sequence of Mediterranean Spain. Geoderma 33:283–296

    Article  CAS  Google Scholar 

  • Potter RM, Rossman GR (1979) The tetravalent manganese oxides: identification, hydration and structural relationships by infrared spectroscopy. Am Miner 64:1199–1218

    CAS  Google Scholar 

  • Powell HKJ, Taylor MC (1982) Interactions of iron (II) and iron (III) with gallic acid and its homologues: a Potentiometrie and spectrophotometric study. Aust J Chem 35:739–756

    Article  Google Scholar 

  • Ross SJ Jr, Fransmeier DP, Roth CB (1976) Mineralogy and chemistry of manganese oxides in some Indiana soils. Soil Sci Soc Am J 40:137–143

    Article  CAS  Google Scholar 

  • Schwab AP, Lindsay WL (1983) Effect of redox on the solubility and availability of iron. Soil Sci Soc Am J 47:201–205

    Article  CAS  Google Scholar 

  • Schwertmann U (1988) Occurrence and formation of iron oxides in various pedoenvironments. In: Stucki JW, Goodman BA, Schwertmann U (eds) Iron in soils and clay minerals. Reidel, Dordrecht, pp 277–308

    Google Scholar 

  • Schwertmann U, Murad E (1983) The effect of pH on the formation of goethite and hematite from ferrihydrite. Clays Clay Miner 31:277–284

    Article  CAS  Google Scholar 

  • Schwertmann U, Kodama H, Fischer WR (1986) Mutual interactions between organics and iron oxides. In: Huang PM, Schnitzer M (eds) Interactions of soil minerals with natural organics and microbes. Soil Sci Soc Am, Madison, Wisconsin, p 223

    Google Scholar 

  • Shoji S, Fujiwara Y (1984) Active aluminium and iron in the humus horizons of Andosols from north eastern Japan: Their forms, properties and significance in clay weathering. Soil Sci 137:216–226

    Article  CAS  Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters. Wiley Inc, NY

    Google Scholar 

  • Sullivan TJ, Seip HM, Muniz IP (1986) A comparison of frequently used methods for the determination of aqueous aluminium. Int J Environ Anal Chem 26:61–75

    Article  CAS  Google Scholar 

  • Szilagy M (1973) The redox properties and the determination of the normal potential of the peat-water system. Soil Sci 115:434–437

    Article  Google Scholar 

  • Taylor RM, Graley AM (1967) The influence of ionic environments on the nature of iron oxides in soils. J Soil Sci 18:341–348

    Article  CAS  Google Scholar 

  • Taylor RM, McKenzie RM (1966) The association of trace elements with manganese minerals in Australian soils. Aust J Soil Res 4:29–39

    Article  CAS  Google Scholar 

  • Taylor RM, McKenzie RM, Norrish K (1964) The mineralogy and chemistry of manganese in some Australian soils. Aust J Soil Res 2:235–248

    Article  CAS  Google Scholar 

  • Taylor RM, McKenzie RM, Fordham AW, Gillman GP (1983) Oxide minerals. In: Soils: an Australian viewpoint. Division of Soils. CSIRO Melbourne, Academic Press, Lond NY, p 309

    Google Scholar 

  • Tejedor-Tejedor MI, Paterson E (1980) Reversibility of lattice collapse in synthetic buserite. In: Mortland MM, Farmer VC (eds) Int Clay Conf 1978. Elsevier, Amst, p 501

    Google Scholar 

  • Tipping E, Cooke D (1982) The effect of adsorbed humic substances on the surface charge of goethite (α-FeOOH) in fresh waters. Geochim Cosmochim Acta 46:75–80

    Article  CAS  Google Scholar 

  • Traina SJ, Doner HE (1985) Heavy metal induced released of manganese (II) from a hydrous manganese dioxide. Soil Sci Soc Am J 49:317–321

    Article  CAS  Google Scholar 

  • Turner RC, Brydon JE (1967) Removal of interlayer aluminium hydroxide from montmorillonite by seeding the suspension with gibbsite. Soil Sci 104:332–335

    Article  CAS  Google Scholar 

  • Turner S, Buseck PR (1981) Todorokites: a new family of naturally occurring manganese oxides. Science 212:1024–1027

    Article  PubMed  CAS  Google Scholar 

  • Uzochukwu GA, Dixon JB (1986) Manganese oxide minerals in nodules of two soils of Texas and Alabama. Soil Sci Soc Am J 50:1358–1363

    Article  CAS  Google Scholar 

  • van Breemen N (1988) Effects of seasonal redox processes involving Fe on the chemistry of periodically reduced soils. In: Stucki JW, Goodman BA, Schwertmann U (eds) Iron in soils and clay minerals. Reidel, Dordrecht, pp 797–809

    Google Scholar 

  • van Olphen H (1963) An introduction to clay colloid chemistry. Intersci NY

    Google Scholar 

  • Vedy JC, Bruckert S (1982) Soil solution: composition and pedogenic significance. In: Bonneau M, Soucher B (eds) Constituents and properties of soils. Academic Press, Lond NY, p 184

    Google Scholar 

  • Wada K (1977) Allophane and imogolite. In: Dixon JB, Weed SB (eds) Minerals in soil environments. Soil Sci Soc Am, Wisconsin, p 603

    Google Scholar 

  • Wada K, Kakuto Y, Fukuhara K (1987) “Chloritized” vermiculite and smectite in some inceptisols and spodosols. Soil Sci Plant Nutr 33:317–326

    CAS  Google Scholar 

  • Wadsley AD (1950) A hydrous manganese oxide with exchange properties. J Am Chem Soc 72:1781–1784

    Article  CAS  Google Scholar 

  • Watson JR, Posner AM, Quirk JP (1973) Adsorption of the herbicide 2,4-D on goethite. J Soil Sci 24:503–511

    Article  CAS  Google Scholar 

  • Zeltner WA, Yost EC, Machesky ML, Tejedor-Tejedor MI, Anderson MA (1986) Characterization of anion binding on goethite using titration colorimetry and cylindrical internal reflection — Fourier transformed infrared spectroscopy. In: Davis JA, Hayes KF (eds) Geochemical processes at mineral surfaces. Symp Ser No 323, Am Chem Soc, Washington DC, p 142

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Paterson, E., Goodman, B.A., Farmer, V.C. (1991). The Chemistry of Aluminium, Iron and Manganese Oxides in Acid Soils. In: Ulrich, B., Sumner, M.E. (eds) Soil Acidity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74442-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74442-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74444-0

  • Online ISBN: 978-3-642-74442-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics