Skip to main content

The Peroxisomal β-Oxidation Systems: Characteristics and (Dys) Functions in Man

  • Conference paper
Book cover Molecular Basis of Membrane-Associated Diseases

Abstract

Peroxisomes are now known to be present in virtually every mammalian cell except the mature erythrocyte. They were first described by Rhodin in 1954 as “spheric or oval bodies” present in the cytoplasm of mouse proximal kidney tubules [1]. Evidence that these “microbodies” were, indeed, different from the other subcellular organelles known at that time, came from cell fractionation experiments by de Duve and co-workers (see [2] for review). The identification of catalase and several Hb2O2-producing oxidases (D-aminoacid oxidase, urate oxidase, glycollate oxidase) within this organelle prompted de Duve and co-workers to introduce the name “peroxisome”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rhodin J (1954) Correlation of ultrastructural organisation and function in normal and experimentally changed proximal tubule cells of the mouse kidney. PhD Thesis, Aktiebolaget Godvil, Stockholm

    Google Scholar 

  2. De Duve C, Baudhuin P (1966) Peroxisomes (microbodies) and related particles. Physiol Rev 46:323–357

    PubMed  Google Scholar 

  3. Lazarow P, de Duve C (1976) A fatty acyl-CoA oxidizing system in rat liver peroxisomes: enhancement by clofibrate, a hypolipidemic drug. Proe Natl Acad Sci USA 73:2043–2046

    Article  CAS  Google Scholar 

  4. Cooper TG, Beevers H (1969) β-oxidation in glyoxysomes from castor bean endosperm. J Biol Chem 244:3514–3520

    PubMed  CAS  Google Scholar 

  5. Kunau WH, Kionka C, Ledebur A, Mateblowski M, Moreno de la Garza M, Schultz-Borchard U, Thieringer R, Veenhuis M (1987) β-oxidation systems in eukaryotic microorganisms. In: Fahimi HD, Sies H (eds) Peroxisomes in biology and medicine. Springer, Berlin Heidelberg New York Tokyo, pp 128–140

    Chapter  Google Scholar 

  6. Tanaka T, Hosaka T, Hoshimaru M, Numa S (1979) Purification and properties of long-chain acyl coenzyme A synthetase from rat liver. Eur J Biochem 98:165–172

    Article  PubMed  CAS  Google Scholar 

  7. Shindo Y, Hashimoto T (1978) Acyl-coenzyme A synthetase and fatty acid oxidation in rat liver peroxisomes. J Biochem 84:1177–1181

    PubMed  CAS  Google Scholar 

  8. Krisans SK, Mortensen RM, Lazarow PB (1980) Acyl-CoA synthetase in rat liver peroxisomes. J Biol Chem 255:9599–9607

    PubMed  CAS  Google Scholar 

  9. Mannaerts GP, Van Veldhoven P, Van Broekhoven A, Van de Broek G, De Beer LJ (1982) Evidence that peroxisomal acyl-CoA synthetase is located at the cytoplasmic site of the peroxi-somal membrane. Biochem J 204:17–23

    PubMed  CAS  Google Scholar 

  10. Miyazawa S, Hashimoto T, Yokota S (1985) Identity of long-chain acyl coenzyme A synthetase of microsomes, mitochondria, and peroxisomes in rat liver. J Biochem 98:723–733

    PubMed  CAS  Google Scholar 

  11. Bremer J, Osmundsen H (1984) Fatty acid oxidation and its regulation. In: Numa S (ed) Fatty acid metabolism and its regulation. Elsevier, Amsterdam, pp 113–154

    Chapter  Google Scholar 

  12. Schulz H (1985) Oxidation of fatty acids. In: Vance DE, Vance FE (eds) Biochemistry of lipids and membranes. Benjamin/Cummings, Menlo Park, CA, pp 116–142

    Google Scholar 

  13. Middleton B (1973) The oxoacyl CoA thiolases of animal tissues. Biochem J 132:717–730

    PubMed  CAS  Google Scholar 

  14. Staack H, Binstock JF, Schulz H (1978) Purification and properties of a pig heart thiolase with broad chain length specificity and comparison of thiolases from heart and Escherichia coli. J Biol Chem 253:1827–1831

    PubMed  CAS  Google Scholar 

  15. Bhusnan A, Singh RP, Singh I (1986) Characterization of rat brain microsomal acyl-coenzyme A ligase: different enzymes for the synthesis of palmitoyl-CoA and lignoceroyl-CoA. Arch Biochem Biophys 246:374–380

    Article  Google Scholar 

  16. Wanders RJA, van Roermund CWT, van Wijland MJA, Schutgens RBH, Schram AW, van den Bosch H, Tager JM (1987) Studies on the peroxisomal oxidation of palmitate and lignocerate in rat liver. Biochim Biophys Acta 919:21–25

    PubMed  CAS  Google Scholar 

  17. Singh H, Derwas N, Poulos A (1987) Very long chain fatty acid β-oxidation by rat liver mitochondria and peroxisomes. Arch Biochem Biophys 359:382–390

    Article  Google Scholar 

  18. Wanders RJA, van Roermund CWT, van Wijland MJA, Schutgens RBH, Heikoop J, van den Bosch H, Schräm AW, Tager JM (1987) Peroxisomal fatty acid β-oxidation in relation to the accumulation of very long chain fatty acids in peroxisomal disorders. J Clin Invest 80:1778–1783

    Article  PubMed  CAS  Google Scholar 

  19. Wanders RJA, van Roermund CWT, van Wijland MJA, Schutgens RBH, van den Bosch H, Schräm AW, Tager JM (1988) Direct demonstration that the deficient oxidation of very long chain fatty acids in X-linked adrenoleukodystrophy is due to an impaired ability of peroxisomes to activate very long chain fatty acids. Biochem Biophys Res Commun 153:618–624

    Article  PubMed  CAS  Google Scholar 

  20. Osumi T, Hashimoto T (1978) Acyl-CoA oxidase of rat liver: a new enzyme for fatty acid oxidation. Biochem Biophys Res Commun 83:479–485

    Article  PubMed  CAS  Google Scholar 

  21. Inestrosa NC, Bronfman M, Leighton F (1979) Detection of peroxisomal fatty acyl-coenzyme A oxidase activity. Biochem J 182:779–788

    PubMed  CAS  Google Scholar 

  22. Osumi T, Hashimoto T, Ui N (1980) Acyl-CoA oxidase of rat liver: a new enzyme for fatty acid oxidation. J Biochem 87; 1735–1746

    PubMed  CAS  Google Scholar 

  23. Inestrosa NC, Bronfman M, Leighton M (1980) Purification of the peroxisomal fatty acyl-Coa oxidase from rat liver. Biochem Biophys Res Commun 95:7–12

    Article  PubMed  CAS  Google Scholar 

  24. Osumi T, Hashimoto T (1979) Peroxisomal β-oxidation system of rat liver. Copurification of enoyl-CoA hydratase and 3-hydroxyacyl-CoA dehydrogenase. Biochem Biophys Res Commun 89:580–584

    Article  PubMed  CAS  Google Scholar 

  25. Furuta S, Miyazawa S, Osumi T, Hashimoto T, Ui N (1980) Properties of mitochondrial and peroxisomal enoyl-CoA hydratase from rat liver. J Biochem 88; 1059–1070

    PubMed  CAS  Google Scholar 

  26. Osumi T, Hashimoto T (1980) Purification and properties of mitochondrial and peroxisomal 3-hydroxyacyl-CoA dehydrogenase from rat liver. Arch Biochem Biophys 203:372–383

    Article  PubMed  CAS  Google Scholar 

  27. Miyazawa S, Osumi T, Hashimoto T (1980) The presence of a new 3-oxoacyl-CoA thiolase in rat liver peroxisomes. Eur J Biochem 103:589–596

    Article  PubMed  CAS  Google Scholar 

  28. Miyazawa S, Furuta S, Osumi T, Hashimoto T, Ui N (1981) Properties of peroxisomal 3-ketoacyl-Coa thiolase from rat liver. J Biochem 90:511–519

    PubMed  CAS  Google Scholar 

  29. Markwell MAK, Tolbert NE, Bieber LL (1976) Comparison of the carnitine acyltransferase activities from rat liver peroxisomes and microsomes. Arch Biochem Biophys 176:479–488

    Article  CAS  Google Scholar 

  30. Miyazawa S, Ozasu H, Osumi T, Hashimoto T (1983) Purification and properties of carnitine octanoyltransferase and carnitine palmitoyltransferase from rat liver. J Biochem 94:529–542

    PubMed  CAS  Google Scholar 

  31. Markwell MAK, McGroarty EJ, Bieber LL, Tolbert NE (1973) The subcellular distribution of carnitine acyltransferases in mammalian liver and kidney. A new peroxisomal enzyme. J Biol Chem 248:3426–3452

    PubMed  CAS  Google Scholar 

  32. Farrell SO, Bieber LL (1983) Carnitine octanoyltransferase of mouse liver peroxisomes: properties and effect of hypolipidemic drugs. Arch Biochem Biophys 222:123–132

    Article  PubMed  CAS  Google Scholar 

  33. Stoffel W, Ditzer R, Caesar H (1964) Der Stoffwechsel der ungesättigten Fettsäuren III. Zur β-Oxidation der Mono-und Polyenfettsäuren. Der Mechanismus der enzymatischen Reaktionen an A3-cis-enoyl-CoA-Verbindungen. Hoppe-Seylers Z Physiol Chem 339:167–181

    Article  PubMed  CAS  Google Scholar 

  34. Stoffel W, Caesar H (1965) Der Stoffwechsel der ungesättigten Fettsäuren V. Zur β-Oxidation der Mono-und Polyenfettsäuren. Der mechanismus der enzymatischen Reaktionen an A2-cis-en-oyl-CoA-Verbindungen. Hoppe-Seylers Z Physiol Chem 341:76–83

    Article  PubMed  CAS  Google Scholar 

  35. Kunau WH, Schulz H (1987) β-oxidation of unsaturated fatty acids: a revised pathway. Trends Biochem Sci 12:403–406

    Article  Google Scholar 

  36. Dommes V, Kunau WH (1984) Purification and properties of acyl coenzyme A dehydrogenases from bovine liver. J Biol Chem 259:1789–1797

    PubMed  CAS  Google Scholar 

  37. Kimura C, Kondo A, Koeda N, Yamanaka H, Mizugaki M (1984) Studies on the metabolism of unsaturated fatty acids. XV. Purification and properties of 2,4-dienoyl-CoA reductase from rat liver peroxisomes. J Biochem 96:1463–1469

    PubMed  CAS  Google Scholar 

  38. Kärki T, Hakkola E, Hassinen IE, Hiltunen JK (1987) β-oxidation of polyunsaturated fatty acids in peroxisomes. Subcellular distribution of Δ3, Δ2-enoyl-CoA isomerase activity in rat liver. FEBS Lett 215:228–232

    Article  PubMed  Google Scholar 

  39. Palosaari PM, Autio-Harmainen H, Sormunen R, Hassinen IE, Hiltunen JK (1988) β-oxidation of polyunsaturated fatty acids. Peroxisomal Δ32-enoyl-CoA isomerase in rat liver. In: IUB-Congr, Prague (Abstr)

    Google Scholar 

  40. Furuta S, Miyazawa S, Hashimoto T (1981) Purification and properties of rat liver acyl-CoA dehydrogenases and electron transfer flavoprotein. J Biochem 90:1739–1750

    PubMed  CAS  Google Scholar 

  41. Osumi T, Hashimoto T (1980) Purification and properties of mitochondrial and peroxisomal 3-hydroxyacyl-CoA dehydrogenase from rat liver. Arch Biochem Biophys 203:372–383

    Article  PubMed  CAS  Google Scholar 

  42. Miyazawa S, Ozasa H, Furuta S, Osumi T, Hashimoto T (1983) Purification and properties of carnitine acetyltransferase from rat liver. J Biochem 93:439–451

    PubMed  CAS  Google Scholar 

  43. Ikeda Y, Dabrowski C, Tanaka K (1983) Separation and properties of five distinct acyl-CoA dehydrogenases from rat liver mitochondria. Identification of a new 2-methyl-branched chain acyl-CoA dehydrogenase. J Biol Chem 258:1066–1076

    CAS  Google Scholar 

  44. Neat CE, Thomassen MS, Osmundsen H (1981) Effects of high-fat diets on hepatic fatty acid oxidation in the rat. Biochem J 196:149–159

    PubMed  CAS  Google Scholar 

  45. Horie S, Suga T (1985) Enhancement of peroxisomal β-oxidation in the liver of rats and mice treated with valproic acid. Biochem Pharmacol 34:1357–1362

    Article  PubMed  CAS  Google Scholar 

  46. Van den Branden C, Vamecq J, Wijbo I, Roels F (1986) Phytol and peroxisome proliferation. Pediatr Res 20:411–415

    Article  PubMed  Google Scholar 

  47. Just WW, Hartl FU (1983) Stimulation of peroxisomal fatty acid β-oxidation by thyroid hormones. Hoppe-Seylers Z Physiol Chem 264:1541–1547

    Article  Google Scholar 

  48. Reddy JK, Lalwani ND, Dabholkar AS, Reddy MK, Qureshi SA (1981) Proliferation of perox-isomes and vitamin E deficiency. Biochem Int 3:41–49

    CAS  Google Scholar 

  49. Nedergaard J, Alexson S, Cannon B (1980) Cold adaptation in the rat: increased brown fat peroxisomal β-oxidation relative to maximal mitochondrial oxidative capacity. Am j Physiol 239:C208–C216

    PubMed  CAS  Google Scholar 

  50. Black VA, Russo JJ (1980) Hormone-dependent changes in peroxisomal enzyme activity in guinea pig adrenal. Am J Anat 159:85–120

    Article  PubMed  CAS  Google Scholar 

  51. Mannaerts GP, De Beer LJ, Thomas J, De Schepper PJ ( 1979) Mitochondrial and peroxisomal fatty acid oxidation in liver homogenates from control and clofibrate treated rats. J Biol Chem 254:4585–4595

    PubMed  CAS  Google Scholar 

  52. Ide T, Ontko JA (1981) Increased secretion of very low density lipoprotein triglycéride following inhibition of long chain fatty acid oxidation in isolated rat liver. J Biol Chem 256:10247–10255

    PubMed  CAS  Google Scholar 

  53. Foerster EC, Fuhrenkemper T, Rabe U, Graf P, Sies H (1981) Peroxisomal fatty acid oxidation as detected by H2O2 production in intact perfused liver. Biochem J 196:705–712

    PubMed  CAS  Google Scholar 

  54. Tager JM, Ten Harmsen van de Beek WA, Wanders RJA, Hashimoto T, Heymans HSA, van den Bosch H, Schutgens RBH, Schräm AW (1985) Peroxisomal β-oxidation enzyme proteins in the Zellweger syndrome. Biochem Biophys Res Commun 126:1269–1275

    Article  PubMed  CAS  Google Scholar 

  55. Lazarow PB, Black V, Shio H, Fujiki Y, Hajra AK, Datta NS, Bangaru BS, Dancis J (1985) Zellweger syndrome: biochemical and morphological studies on two patients treated with clofibrate. Pediatr Res 19:1356–1364

    Article  PubMed  CAS  Google Scholar 

  56. Suzuki Y, Orii T, Mori M, Tatibana M, Hashimoto T (1986) Deficient activities and proteins of peroxisomal β-oxidation enzymes in infants with Zellweger syndrome. Clin Chim Acta 156:191–196

    Article  PubMed  CAS  Google Scholar 

  57. Chen WW, Watkins PP, Osumi T, Hashimoto T, Moser HW (1987) Peroxisomal β-oxidation enzyme proteins in adrenoleukodystrophy: distinction between X-linked and neonatal adren-oleukodystrophy. Proc Natl Acad Sci USA 84:1425–1428

    Article  PubMed  CAS  Google Scholar 

  58. Poll-Thé BT, Roels F, Ogier H, Scotto J, Vamecq J, Schutgens RBH, Wanders RJA, van Roermund CWT, van Wijland MJA, Schräm AW, Tager JM, Saudubray JM (1988) A new peroxisomal disorder with enlarged peroxisomes and a specific deficiency of acyl-CoA oxidase (pseudoneonatal adrenoleukodystrophy). Am J Human Genet 42:422–434

    Google Scholar 

  59. Schräm AW, Goldfischer S, van Redmond CWT, Brouwer-Kelder EM, Collins J, Hashimoto T, Heymans HSA, van den Bosch H, Schutgens RBH, Tager JM, Wanders RJA (1987) Human peroxisomal 3-oxoacyl-coenzyme A thiolase deficiency. Proc Natl Acad Sci USA 84:2494–2497

    Article  PubMed  Google Scholar 

  60. Wanders RJA, Heymans HSA, Schutgens RBH, Barth PG, van den Bosch H, Tager JM (1988) Peroxisomal disorders in neurology. J Neurol Sci 88:1–39

    Article  PubMed  CAS  Google Scholar 

  61. Numa S (1981) Two long-chain acyl coenzyme A synthestases: their different roles in fatty acid metabolism and its regulation. Trends Biochem Sci 6:113–115

    Article  CAS  Google Scholar 

  62. Kawamura N, Moser HW, Kishimoto Y (1981) Very long chain fatty acid oxidation in rat liver. Biochem Biophys Res Commun 99:1216–1225

    Article  PubMed  CAS  Google Scholar 

  63. Singh I, Moser AB, Goldfischer S, Moser HW (1984) Lignoceric acid is oxidized in the peroxisome: implications for the Zellweger cerebrohepato-renal syndrome and adrenoleukodystrophy. Proc Natl Acad Sci USA 81:4203–4207

    Article  PubMed  CAS  Google Scholar 

  64. Bremer J (1977) Carnitine and its role in fatty acid metabolism. Trends Biochem Sci 2:207–209

    CAS  Google Scholar 

  65. Singh H, Derwas N, Poulos a (1987) β-oxidation of very long chain fatty acids and their coenzyme A derivatives by human skin fibroblasts. Arch Biochem Biophys 254:526–533

    Article  PubMed  CAS  Google Scholar 

  66. Christiansen RZ (1978) The effect of clofibrate feeding on hepatic fatty acid metabolism. Biochim Biophys Acta 530:314–324

    PubMed  CAS  Google Scholar 

  67. Bremer J, Norum KR ( 1982) Metabolism of very long chain monounsaturated fatty acids (C22:1) and the adaptation to their presence in the diet. J Lipid Res 23:243–256

    PubMed  CAS  Google Scholar 

  68. Dommes V, Baumgart C, Kunau WH (1981) Degradation of unsaturated fatty acids in peroxi-somes. J Biol Chem 256:8259–8262

    PubMed  CAS  Google Scholar 

  69. Hiltunen JK, Kärki T, Hassinen IE, Osmundsen H (1986) β-oxidation of polyunsaturated fatty acids by rat liver peroxisomes. A role for 2,4-dienoyl-coenzyme A reductase in peroxisomal β-oxidation. J Biol Chem 261:16484–16493

    PubMed  CAS  Google Scholar 

  70. Hovik R, Osmundsen H (1987) Peroxisomal β-oxidation of long-chain fatty acids possessing different extents of unsaturation. Biochem J 247:531–535

    PubMed  CAS  Google Scholar 

  71. Kolvraa S, Gregersen N ( 1986) In vitro studies on the oxidation of medium chain dicarboxylic acids in rat liver. Biochim Biophys Acta 876:515–525

    PubMed  CAS  Google Scholar 

  72. Vamecq J, Draye JP (1987) Interaction between the and β-oxidation of fatty acids. J Biochem 102:225–234

    PubMed  CAS  Google Scholar 

  73. Vamecq J, de Hoffmann E, Van Hoof F (1985) The microsomal dicarboxylyl-CoA synthetase. Biochem J 230:683–693

    PubMed  CAS  Google Scholar 

  74. Danielsson H, Sjövall J (1975) Bile acid metabolism. Annu Rev Biochem 44:233–253

    Article  PubMed  CAS  Google Scholar 

  75. Masui T, Staple E (1966) The formation of bile acids from cholesterol. J Biol Chem 241:3889–3893

    PubMed  CAS  Google Scholar 

  76. Pedersen JI, Gustafsson J (1980) Conversion of 3a, 7a, 12a-trihydroxy-5β-cholestanoic acid into cholic acid by rat liver peroxisomes. FEBS Lett 121:345–348

    Article  PubMed  CAS  Google Scholar 

  77. Käse BF, Björkhem I, Pedersen JI (1983) Formation of cholic acid from 3α, 7α, 12α-trihydroxy-5β-eholestanoic acid by rat liver peroxisomes. J Lipid Res 24:1560–1567

    PubMed  Google Scholar 

  78. Käse BF, Prydz K, Björkhem I, Pedersen JI (1986) In vitro formation of bile acids from di-and trihydroxy-5β-cholestanoic acid in human liver peroxisomes. Biochim Biophys Acta 877:37–42

    PubMed  Google Scholar 

  79. Kase BF, Pedersen JI, Strandvik B, Björkhem I (1985) In vivo and in vitro studies on the formation of bile acids in patients with the Zellweger syndrome. Evidence that peroxisomes are of importance in the normal biosynthesis of both cholic acid and chenodeoxycholic acid. J Clin Invest 76:2393–2402

    Article  PubMed  CAS  Google Scholar 

  80. Casteels M, Schepers L, Van Eldere J, Eyssen H, Mannaerts GP (1988) Inhibition of 3α, 7α, 12a-trihydroxy-5β-cholestanoic acid oxidation and of bile acid secretion in rat liver by fatty acids. J Biol Chem 263:4654–4661

    PubMed  CAS  Google Scholar 

  81. Hamberg M (1968) Metabolism of prostaglandins in rat liver mitochondria. Eur J Biochem 6:135–146

    Article  PubMed  CAS  Google Scholar 

  82. Diczfalusy U, Alexson SEH, Pedersen JI (1987) Chain-shortening of prostaglandin F2a by rat liver peroxisomes. Biochem Biophys Res Commun 144:1206–1215

    Article  PubMed  CAS  Google Scholar 

  83. Schepers L, Casteels M, Vamecq J, Parmentier G, Van Veldhoven PP, Mannaerts GP (1988) β-oxidation of the carboxyl side chain of prostaglandin E2 in rat liver peroxisomes and mitochondria. J Biol Chem 263:2724–2731

    PubMed  CAS  Google Scholar 

  84. Yamada J, Horie S, Watanabe T, Suga T (1984) Participation of peroxisomal β-oxidation system in the chain-shortening of a xenobiotic acyl compound. Biochem Biophys Res Commun 125:123–128

    Article  PubMed  CAS  Google Scholar 

  85. Yamada J, Itoh S, Horie S, Watanabe T, Suga T (1986) Chain-shortening of a xenobiotic acyl compound by the peroxisomal β-oxidation system in rat liver. Biochem Pharmacol 35:4363–4368

    Article  PubMed  CAS  Google Scholar 

  86. Simon EJ, Gross CS, Milhorat AT (1985) The metabolism of vitamin E. J Biol Chem 221:797–805

    Google Scholar 

  87. Stene DO, Murphy RC (1988) Metabolism of leukotriene E4 in isolated rat hepatocytes. J Biol Chem 263:2773–2778

    PubMed  CAS  Google Scholar 

  88. Tsukamoto T, Ohno K, Yokota S, Fujiki Y (1987) Biogenesis of 15 kD integral membrane protein of rat liver peroxisomes, a common endomembrane protein. In: Tada K, Orii T, Hashimoto T, Fujiki Y (eds) 4th Int Congr Inborn errors of metabolism Abstr, p 20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wanders, R.J.A., Van Roermund, C.W.T., Van Wijland, M.J.A., Schutgens, R.B.H., Van Den Bosch, H., Tager, J.M. (1989). The Peroxisomal β-Oxidation Systems: Characteristics and (Dys) Functions in Man. In: Azzi, A., Drahota, Z., Papa, S. (eds) Molecular Basis of Membrane-Associated Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74415-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74415-0_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74417-4

  • Online ISBN: 978-3-642-74415-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics