Transmembrane Ionic Fluxes in the Brain in Energy-Depleted Cells

  • B. K. Siesjö
Conference paper


The membranes of brain cells, particularly neurons, have a high resting permeability to ions. This “leakiness” is reflected in the high consumption of energy which, to a very large extent, seems to be utilized to pump ions against constant leak fluxes along dissipative pathways. Thus, when energy production is arrested, as occurs in anoxia or in hypoglycemic coma, ion gradients in the brain are quickly dissipated.


Mean Arterial Blood Pressure Excitatory Amino Acid Cortical Spreading Depression Spreading Depression Energy Failure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abercrombie RF, Hart CE (1986) Calcium and proton buffering and diffusion in isolated cytoplasm from Myxicola axons. Am J Physiol 250 (Cell Physiol 19):C391–C405PubMedGoogle Scholar
  2. Alberti KGMM, Cuthbert C (1982) The hydrogen ion in normal metabolism: a review. In: Porter R, Lawrenson G (eds) Metabolic acidosis, CIBA Found Symp’ 87. Pitman, London, pp 1–19Google Scholar
  3. Astrup J (1982) Energy-requiring cell functions in the ischémie brain. J Neurosurg 56:482–497PubMedCrossRefGoogle Scholar
  4. Astrup J, Norberg K (1976) Potassium activity in cerebral cortex in rats during progressive severe hypoglycemia. Brain Res 103:418–423PubMedCrossRefGoogle Scholar
  5. Astrup J, Blennow G, Nilsson B (1979) Effects of reduced cerebral blood flow upon EEG pattern, cerebral extracellular potassium, and energy metabolism in the rat cortex during bicuculline-in-duced seizures. Brain Res 177:115–126PubMedCrossRefGoogle Scholar
  6. Astrup J, Rehncrona S, Siesjö BK (1980) The increase in extracellular potassium concentration in the ischemic brain in relation to the preischemic functional activity and cerebral metabolic rate. Brain Res 199:161–174PubMedCrossRefGoogle Scholar
  7. Astrup J, Siesjö BK, Symon L (1981) Thresholds in cerebral ischemia — the ischemie penumbra. Stroke 12(6):723–725PubMedCrossRefGoogle Scholar
  8. Auer R, Hall P, Ingvar M, Siesjö BK (1986) Hypotension as a complication of hypoglycemia leads to enhanced energy failure but no increase in neuronal necrosis. Stroke 17(3):442–449PubMedCrossRefGoogle Scholar
  9. Benveniste H, Brejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentration of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43:1369–1374PubMedCrossRefGoogle Scholar
  10. Boris-Möller F, Drakenberg T, Elmdén K, Forsén S, Siesjö BK (1988) Evidence against major compartmentalization of H+ in ischemie rat brain tissue. Neurosci Lett 85:113–118PubMedCrossRefGoogle Scholar
  11. Boron WF (1983) Topical review: transport of H+ and ionic weak acids and bases. J Membrane Biol 72:1–16CrossRefGoogle Scholar
  12. Busa WB, Nuchitello R (1984) Metabolic regulation via intracellular pH. Am J Physiol 246 (Regul Integr Comp Physiol 15):R409–R438PubMedGoogle Scholar
  13. Caldwell PC (1956) Intracellular pH. In: Bourne GH, Danielli JF (eds) International review of cytology, vol 5. Academic Press, New York London, pp 229–277Google Scholar
  14. Chapman AG, Westerberg E, Siesjö BK (1981) The metabolism of purine and pyrimidine nucleotides in rat cortex during insulin-induced hypoglycemia and recovery. J Neurochem 36:179–189PubMedCrossRefGoogle Scholar
  15. Collingridge GJ (1985) Long-term potentiation in the hippocampus: mechanisms of initiation and modulation by neurotransmitters. TIPS 6:407–411Google Scholar
  16. Cull-Candy SG, Usowicz MM (1987) Multiple-conductance channels activated by excitatory amino acids in cerebellar neurons. Nature (London) 325:525 ffCrossRefGoogle Scholar
  17. Endres W, Ballanyi K, Serve G, Grafe P (1986) Excitatory amino acids and intracellular pH in motoneurons of the isolated frog spinal cord. Neurosci Lett 72:54–58PubMedCrossRefGoogle Scholar
  18. Fagg GE (1985) L-glutamate, excitatory amino acid receptors and brain function. TINS 8:207–210Google Scholar
  19. Fagg GE, Foster AC, Ganong AH (1986) Excitatory amino acid synaptic mechanisms and neurological function. TIPS 9:357–363Google Scholar
  20. Foster AC, Fagg GE (1988) Taking apart NMDA receptors. Nature (London) 329:395–396CrossRefGoogle Scholar
  21. Goroleva NA, Koroleva VI, Amemori T, Pavlik V and Bures J (1987) Ketamine blockade of cortical spreading depression in rats. Electroencephalogr Clin Neurophysiol 66:440–447CrossRefGoogle Scholar
  22. Grinstein S and Rothstein A (1986) Mechanisms of regulation of the Na+/H+ exchanger: topical review. J Membrane Biol 90:1–12CrossRefGoogle Scholar
  23. Hansen AJ (1978) The extracellular potassium concentration in brain cortex following ischemia in hypo-and hyperglycemic rats. Acta Physiol Scand 102:324PubMedCrossRefGoogle Scholar
  24. Hansen AJ (1985) Effect of anoxia on ion distribution in the brain. Physiol Rev 65:101–147PubMedGoogle Scholar
  25. Hansen AJ, Nordström C-H (1979) Brain extracellular potassium and energy metabolism during ischemia in juvenile rats after exposure to hypoxia for 24 h. J Neurochem 32:915–920PubMedCrossRefGoogle Scholar
  26. Hansen AJ, Hounsgaard J and Jahnsen H (1982) Anoxia increases potassium conductance in hip-pocampal nerve cells. Acta Physiol Scand115:301–310PubMedCrossRefGoogle Scholar
  27. Hansen AJ, Lauritzen M, Wieloch T (1988) NMDA antagonists inhibit cortical spreading depression, but not anoxic depolarization. Acta Physiol Scand 132:6Google Scholar
  28. Harris RJ, Symon L (1984) Extracellular pH, potassium, and calcium activities in progressive ischaemia or rat cortex. J Cerebr Blood Flow Metabol 4:178–186CrossRefGoogle Scholar
  29. Harris RJ, Symon L, Branston NM, Bayhan M (1981) Changes in extracellular calcium activity in cerebral ischaemia. J Cerebr Blood Flow Metabol 1:203–209CrossRefGoogle Scholar
  30. Harris RJ, Wieloch TW, Symon L, Siesjö BK (1984) Cerebral extracellular calcium activity in severe hypoglycemia: relation to extracellular potassium and energy state. J Cerebr Blood Flow Metabol 4:187–193CrossRefGoogle Scholar
  31. Heinemann U, Lux HD, Gutnick MJ (1977) Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat. Exp Brain Res 27:237–243PubMedCrossRefGoogle Scholar
  32. Hochachka PW, Mommsen TP (1983) Protons and anaerobiosis. Science 219:1391–1397PubMedCrossRefGoogle Scholar
  33. Höller M, Dierking H, Dengler K, Tegtmeier F, Peter T (1986) Effect of flunarizine on extracellular ion concentration in the rat brain under hypoxia and ischemia. In: Battistini N, Fiorani P, Courbier R, Plum F, Fieschi C (eds) Acute brain ischemia medical and surgical therapy, vol 32. Raven, New York, pp 229–236Google Scholar
  34. Jahr CE, Stevens CF (1987) Glutamate activities multiple single channel conductances in hippocampal neurons. Nature (London)325:522–525CrossRefGoogle Scholar
  35. Kaila R, Voipio J (1987) Postsynaptic fall in intracellular pH induced by GABA-activated bicarbonate conductance. Nature (London) 330:163–165CrossRefGoogle Scholar
  36. Kraig RP, Ferreira-Filho CH, Nicholson C (1983) Alkaline and acid transients in cerebellar microenvironment. J Neurophys 49:831–850Google Scholar
  37. Kraig RP, Pulsinelli WA, Plum F (1985) Hydrogen ion buffering during complete brain ischemia. Brain Res 342:281–290PubMedCrossRefGoogle Scholar
  38. Kraig RP, Pulsinelli WA, Plum F (1986) Carbonic acid buffer changes during complete brain ischemia. Am J Physiol 250 (Regul Integr Comp Physiol 19):R348–R357Google Scholar
  39. Krnjevic K (1975) Coupling of neuronal metabolism and electrical activity. In: Ingvar DH, Lassen NA (eds) Brain work. Alfred Benzon Symp VIII. Munksgaard, CopenhagenGoogle Scholar
  40. Kudo Y, Oguro A (1986) Glutamate-induced increase in intracellular Ca2+ concentration in isolated hippocampal neurones. Br J Pharmacol89:191–198PubMedGoogle Scholar
  41. Lauritzen M (1987) Cortical spreading depression as a putative migraine mechanism. TINS 1:8–13Google Scholar
  42. Mayer M (1987) Two channels reduced to one. Nature 325:480–481PubMedCrossRefGoogle Scholar
  43. Mayer ML, Westbrook GL (1987) Cellular mechanisms underlying excitotoxicity. TINS 2(10):59–61Google Scholar
  44. Meldrum BS (1983) Metabolic factors during prolonged seizures and their relation to nerve cell death. In: Delgado-Escueta AV, Waterlain CG, Treiman DM, Porter RJ (eds) Advances in neurology, vol 34: Status epilepticus. Raven, New York, pp 261–275Google Scholar
  45. Miess G, Paschen W (1984) Regional changes of blood flow, glucose, and ATP content determined on brain sections during a single passage of spreading depression in rat brain cortex. Exp Neurol 84:249–258CrossRefGoogle Scholar
  46. Miller RJ (1987) Multiple calcium channels and neuronal function. Science 235:46–52PubMedCrossRefGoogle Scholar
  47. Murphy SN, Thayer SA, Miller RJ (1988) The effects of excitatory amino acids on intracellular calcium in single mouse striatal neurons in vitro. J Neurosci (in press)Google Scholar
  48. Mutch WA, Hansen AJ (1984) Extracellular pH changes during spreading depression and cerebral ischemia: mechanisms of brain pH regulation. J Cerebr Blood Flow Metabol 4:17–27CrossRefGoogle Scholar
  49. Nedergaard M (1988) Mechanisms of brain damage in focal cerebral ischemia. Acta Neurol Scand 77:3–24(Suppl)CrossRefGoogle Scholar
  50. Nicholson C (1979) Brain-cell microenvironment as a communication channel. In: Schmitt FO, Worden FG (eds) The neurosciences: 4th study program. MIT, Cambridge, pp 457–471Google Scholar
  51. Nicholson C (1980) Measurement of extracellular ions in the brain. Trends Neurosci 3:216–218CrossRefGoogle Scholar
  52. Nicholson C, Kraig RP (1981) The behaviour of extracellular ions during spreading depression. In: Zeuthen T (ed) The application of ion-selective microelectrodes. Elsevier/North Holland, Biomédical Press, Amsterdam, pp 217–238Google Scholar
  53. Nilsson B, Norberg K, Nordström C-H, Siesjö BK (1975) Rate of energy utilization in the cerebral cortex of rats. Acta Physiol Scand 93:569–571PubMedCrossRefGoogle Scholar
  54. Nordström C-H, Siesjö BK (1978) Effects of phenobarbital in cerebral ischemia. Pt I: Cerebral energy metabolism during pronounced incomplete ischemia. Stroke 9:327–335PubMedCrossRefGoogle Scholar
  55. Nowak L, Bregestovski P, Ascher P, Herbert A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature (London) 307:462–465CrossRefGoogle Scholar
  56. Nowak L, Ascher P, Berwald-Netter Y (1987) Ionic channels in mouse astrocytes in culture. J Neurosci 7:101–109PubMedGoogle Scholar
  57. Nowycky MCAP, Tsien RW (1985) Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature (London)316:440–443CrossRefGoogle Scholar
  58. Noma A (1983) ATP-regulated K+ channels in cardiac muscle. Nature (London) 305:147–148CrossRefGoogle Scholar
  59. Partridge LD, Swandulla D (1988) Calcium-activated non-specific cation channels. TINS 11(2):69–72PubMedGoogle Scholar
  60. Pelligrino D, Almquist L-O, Siesjö BK (1981) Effects of insulin-induced hypoglycemia on intracellular pH and impedance in the cerebral cortex of the rat. Brain Res 221:129–147PubMedCrossRefGoogle Scholar
  61. Peters T (1986) Calcium in physiological and pathological cell function. Eur Neurol 25 (Suppl l):27–44PubMedCrossRefGoogle Scholar
  62. Phillips JM, Nicholson C (1979) Anion permeability in spreading depression investigated with ion-sensitive microelectrodes. Brain Res173:567–571PubMedCrossRefGoogle Scholar
  63. Pumain R, Heinemann U (1985) Stimulus-and amino acid-induced calcium and potassium changes in rat neocortex. J Neurophysiol 53(1): 1–16PubMedGoogle Scholar
  64. Raichle M (1983) The pathophysiology of brain ischemia. Ann Neurol 13:2–10PubMedCrossRefGoogle Scholar
  65. Ross A, Boron WF (1981) Intracellular pH. Physiol Rev 61(2):296–434Google Scholar
  66. Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of hypoxic-ischemic brain damage. Ann Neurol 19:105–111PubMedCrossRefGoogle Scholar
  67. Siesjö BK (1978) Brain energy metabolism. John Wiley & Sons, Chichester New YorkGoogle Scholar
  68. Siesjö BK (1981) Cell damage in the brain: a speculative synthesis. J Cerebr Blood Flow Metabol 1:155–185CrossRefGoogle Scholar
  69. Siesjö BK (1984) Cerebral circulation and metabolism (Review Article) J Neurosurg 60:383–908Google Scholar
  70. Siesjö BK (1985) Acid-base homeostasis in the brain: physiology, chemistry, and neurochemical pathology. In: Kogure K, Hossmann K-A, Siesjö BK, Welsh FA (eds) Progress in brain research, vol 63. Elsevier, New York, pp 121–154Google Scholar
  71. Siesjö BK (1988a) Historical overview. Calcium, ischemia, and death of brain cells. Ann NY Acad Sci 522:638–661PubMedCrossRefGoogle Scholar
  72. Siesjö BK (1988b) Acidosis and ischémie brain damage. Neurochem Pathol (in press)Google Scholar
  73. Siesjö BK (1988c) Hypoglycemia, brain metabolism, and brain damage. Diabetes/Metabol Rev 4(2): 113–144CrossRefGoogle Scholar
  74. Siesjö BK, Agardh C-D (1983) Hypoglycemia. In: Lajtha A (ed) Handbook of neurochemistry, vol 3. Metabolism in the nervous system, 2nd edn. Plenum Press, New York London, pp 353–379Google Scholar
  75. Siesjö BK, Wieloch T (1985) Cerebral metabolism in ischaemia: neurochemical basis for therapy. Br J Anaesth 57:47–62PubMedCrossRefGoogle Scholar
  76. Siesjö BK, Wieloch T (1986) Epileptic brain damage: pathophysiology and neurochemical pathology. In: Delgado-Escueta AV, Ward AA Jr., Woodbury DM, Porter RJ (eds) Advances in neurology, vol 44. Raven, New York, pp 813–847Google Scholar
  77. Siesjö BK, Zwetnow NN (1970) The effect of hypovolemic hypotension on extra-and intracellular acid-base parameters and energy metabolites in the rat brain. Acta Physiol Scand 79:114–124PubMedCrossRefGoogle Scholar
  78. Siesjö BK, Ingvar M, Wieloch T (1986) Cellular and molecular events underlying epileptic brain damage. Ann NY Acad Sci462:207–223PubMedCrossRefGoogle Scholar
  79. Smith M-L, von Hanwehr R, Siesjö BK (1986) Changes in extra-and intracellular pH in the brain during and following ischemia in hyperglycémie and in moderately hypoglycémie rats. J Cerebr Blood Flow Metabol 6:574–583CrossRefGoogle Scholar
  80. Sokoloff L (1981) Relationships among local functional activity, energy metabolism, and blood flow in the central nervous system. Fed Proc40:2311–2316PubMedGoogle Scholar
  81. Somjen GG (1979) Extracellular potassium in the mammalian central nervous system. Annu Rev Physiol 41:159–177PubMedCrossRefGoogle Scholar
  82. Thomas RC, Meech RW (1982) Hydrogen ion currents and intracellular pH in depolarized voltage-clamped snail neurones. Nature (London)299:826–827CrossRefGoogle Scholar
  83. van Harreveld A (1966) Brain tissue electrolytes. Butterworths, LondonGoogle Scholar
  84. van Harreveld A (1970) A mechanism for fluid shifts specific for the central nervous system. In: Wycis H (ed) Current research in neurosciences, vol 10. Topical problems of psychiatry and neurology. Karger, Basel New York, pp 62–70Google Scholar
  85. von Hanwehr R, Smith M-L, Siesjö BK (1986) Extra-and intracellular pH during near-complete forebrain ischemia in the rat. J Neurochem 46:331–339CrossRefGoogle Scholar
  86. Wieloch T, Harris RJ, Symon L, Siesjö BK (1984) Influence of severe hypoglycemia on brain extracellular calcium and potassium activities, energy, and phospholipid metabolism. J Neurochem 43:160–168PubMedCrossRefGoogle Scholar
  87. Zhang E, Lauritzen M, Wieloch T, Hansen AJ (1989) Calcium movements in brain during failure of energy metabolism. In: Hartmann A, Kuschinsky W (eds) Cerebral ischemia and calcium. (in press)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • B. K. Siesjö
    • 1
  1. 1.Laboratory for Experimental Brain ResearchUniversity of LundSweden

Personalised recommendations