Skip to main content

Biologic Cardiac Assist: Performance Characteristics

  • Conference paper
Assisted Circulation 3

Abstract

Currently, the patient with end-stage heart failure has few therapeutic options. These include cardiac transplantation, mechanical assist devices, and medical therapy only. Despite recent advances in all types of treatment, ideal therapy for the patient with a failing heart has yet to be offered. Such an option should provide independence from external mechanical attachments, allow for an immunocompetent host, and minimize effects associated with blood-surface interaction. Cardiac assist devices powered by skeletal muscle might meet these requirements.

Supported by NIH Grant # LB134778, the John Rhea Barton Research Foundation, and the Mary L. Smith Lead Trust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acker MA, Hammond RL, Mannion JD, Salmons S, Stephenson LW (1986) An autologous biologic pump motor. J Thorac Cardiovasc Surg 92:733–746

    PubMed  CAS  Google Scholar 

  2. Acker MA, Hammond RL, Mannion JD, Salmons S, Stephenson LW (1987) Skeletal muscle as a potential power source for a cardiovascular pump: assessment in vivo. Science 236:324–327

    Article  PubMed  CAS  Google Scholar 

  3. Acker MA, Anderson WA, Hammond RL, Chin AJ, Buchanan JW, Morse CC, Kelly AM, Stephenson LW (1987) Skeletal muscle ventricles in circulation: one to eleven weeks’ experience. J Thorac Cardiovasc Surg 94:163–174

    PubMed  CAS  Google Scholar 

  4. Mannion JD, Hammond RL, Stephenson LW (1986) Canine latissimus dorsi hydraulic pouches. Potential for left ventricular assistance. J Thorac Cardiovasc Surg 91:534–544

    PubMed  CAS  Google Scholar 

  5. Mannion JD, Velchik MA, Acker M, Hammond R, Staum M, Alavi A, Duckett S, Stephenson LW (1986) Transmural blood flow of multi-layered latissimus dorsi skeletal muscle ventricles during circulatory assistance. Trans Am Soc Artif Intern Organs 32:454–460

    CAS  Google Scholar 

  6. Mannion JD, Acker MA, Hammond RL, Stephenson LW (1986) Four-hour circulatory assistance with canine skeletal muscle ventricles. Surg Forum 37:211–213

    Google Scholar 

  7. Mannion JD, Acker MA, Hammond RL, Faltemeyer W, Duckett S, Stephenson LW (1987) Power output of skeletal muscle ventricles in circulation: short-term studies. Circulation 76:155–162

    Article  PubMed  CAS  Google Scholar 

  8. Leriche F, Fontaine R (1933) Essai experimental de traitement de certains infarctus du myocarde et de l’aneuvrisme du coeur par une greffe de muscle strie. Bull Soc Nat Chir 59:229–232

    Google Scholar 

  9. de Jesus FR (1931) Breves consideraciones sobre un case de herida penetrante del corazón. Bol Assoc Med PR 23:380–382

    Google Scholar 

  10. Beck CS (1935) A new blood supply to the heart by operation. Surg Gynecol Obstet 1:407–410

    Google Scholar 

  11. Petrovsky BV (1961) The use of the diaphragm grafts for plastic operations in thoracic surgery. J Thorac Cardiovasc Surg 41:348–355

    PubMed  CAS  Google Scholar 

  12. Petrovsky BV (1966) Surgical treatment of cardiac aneurysms. J Cardiovasc Surg 2:87–91

    Google Scholar 

  13. Christ JE, Spira M (1982) Application of latissimus dorsi muscle to the heart. Ann Plast Surg 8(2): 118

    Article  PubMed  CAS  Google Scholar 

  14. Sola OM, Dillard DH, Ivey TD, Haneda K, Itoh T, Thomas R (1985) Autotransplantation of skeletal muscle into myocardium. Circulation 71:341–348

    Article  PubMed  CAS  Google Scholar 

  15. Schaff HV, Arnold PG, Reeder GS (1982) Late mediastinal infection and pseudoaneurysm following left ventricular aneurysmectomy repair utilizing pectoralis major muscle flap. J Thorac Cardiovasc Surg 84:912–916

    PubMed  CAS  Google Scholar 

  16. Kantrowitz A, McKinnon W (1959) The experimental use of the diaphragm as an auxiliary myocardium. Surg Forum 9:266–268

    Google Scholar 

  17. Kantrowitz A (1960) Functioning autogenous muscle used experimentally as an auxiliary ventricle. Trans Am Soc Artif Intern Organs 6:305–310

    PubMed  CAS  Google Scholar 

  18. Kusaba E, Schraut W, Sawatani S, Jaron D, Freed P, Kantrowitz A (1973) A diaphragmatic graft for augmenting left ventricular function: a feasibility study. Trans Am Soc Artif Intern Organs 19:251–257

    PubMed  CAS  Google Scholar 

  19. Spotnitz HM, Merker C, Malm JR (1974) Applied physiology of the canine rectus abdominis. Trans Am Soc Artif Intern Organs 20:747–756

    PubMed  Google Scholar 

  20. Drinkwater DC et al. (1980) Cardiac assist and myocardial repair with synchronously stimulated skeletal muscle. Surg Forum 31:271–273

    Google Scholar 

  21. Nakamura K, Glenn WWL (1964) Graft of the diaphragm as a functioning substitute for the myocardium. J Surg Res 4:435–39

    Article  PubMed  CAS  Google Scholar 

  22. Termet H, Chalencon JL, Estour E, Gaillard P, Favre JP (1966) Transplantation sur le myocarde d’un muscle strie excite par pacemaker. Ann Chir Thor Cardiol 5:260–263

    CAS  Google Scholar 

  23. Shepherd MP (1969) Diaphragmatic muscle and cardiac surgery. Ann R Coll Surg Engl 45:212–231

    PubMed  CAS  Google Scholar 

  24. Hume WI (1968) Construction of a functioning accessory myocardium. Trans Southern Surg Assoc 79:200–202

    Google Scholar 

  25. Phillips WL, Pallin S, Crostnopol P (1969) Diaphragmatic transplantation. Angiology 20:628–634

    Article  PubMed  CAS  Google Scholar 

  26. Macoviak JA, Stephenson LW, Spielman S, Greenspan A, Likoff M, St. John-Sutton M, Riechek N, Rashkind WJ, Edmunds LH (1980) Electrophysiological and mechanical characteristics of diaphragmatic autograft used to enlarge the right ventricle. Surg Forum 31:270–271

    Google Scholar 

  27. Macoviak JA, Stephenson LW, Spielman S, Greenspan A, Likoff M, St. John-Sutton M, Riechek N, Rashkind WJ, Edmunds LH (1981) Replacement of ventricular myocardium with diaphragmatic skeletal muscle: acute studies. J Thorac Cardiovasc Surg 81:519–527

    PubMed  CAS  Google Scholar 

  28. Macoviak JA, Stephenson LW, Alavi A, Kelly AM, Edmunds LH (1981) Effects of electrical stimulation on diaphragmatic muscle used to enlarge the right ventricle. Surgery 90:271–277

    PubMed  CAS  Google Scholar 

  29. Macovial JA, Stephenson LW, Kelly A, Likoff M, Reichek N, Edmunds LH (1981) Partial replacement of the right ventricle with a synchronously contracting diaphragmatic skeletal muscle autograft. Proceedings of II Meeting of the International Society for Artificial Organs 1981; 5 [Suppl 1]:550–555

    Google Scholar 

  30. Carpentier A, Chachques JC (1985) Myocardial substitute with a stimulated skeletal muscle: first successful clinical case. Lancet 1:1267

    Article  PubMed  CAS  Google Scholar 

  31. Magovern GJ, Park SB, Magovern GJ, Benckart DH, Tullis G, Rozar E, Kao R, Christlieb I (1986) Latissimus dorsi as a functioning synchronously paced muscle component in the repair of a left ventricular aneurysm. Ann Thorac Surg 41:116

    Article  PubMed  CAS  Google Scholar 

  32. Anderson WA, Andersen JS, Acker MA, Hammond RL, Chin AJ, Douglas PS, Salmons S, Stephenson LW (to be published) Skeletal muscle applied to the heart: a word of caution. Circulation

    Google Scholar 

  33. Kusserow BK, Clapp JF (1964) A small ventricle-type pump for prolonged perfusions: construction and initial studies including attempts to power a pump biologically with skeletal muscle. Trans Am Soc Artif Intern Organs 8:74–78

    Google Scholar 

  34. Vachon BR, Kunov H, Zingg W (1975) Mechanical properties of diaphragm muscles in dogs. Med Biol Eng 13:252–260

    Article  PubMed  CAS  Google Scholar 

  35. von Recum A, Stulc JP, Hamada O, Baba H, Kantrowitz A (1977) Long-term stimulation of a diaphragm muscle pouch. J Surg Res 23:422–427

    Article  Google Scholar 

  36. Juffe A, Ricoy JR, Marquez J, Castillo-Olivares JL, Figuera D (1978) Cardialization: a new source of energy for circulatory assistance. Vasc Surg 12:10–17

    Google Scholar 

  37. Mommaerts WFHM (1982) Heart muscle. In: Fishman AP, Richards DW (eds) Circulation of the blood, man and ideas. American Phyiological Society, Bethesda, pp 127–198

    Google Scholar 

  38. Adams R, Schwartz A (1980) Comparative mechanisms for contraction of cardiac and skeletal muscle. Chest 78:123–139

    PubMed  CAS  Google Scholar 

  39. Dewar ML, Drinkwater DC, Wittnich C, Chiu RCJ (1984) Synchronously stimulated skeletal muscle graft for myocardial repair. J Thorac Cardiovasc Surg 87:325–331

    PubMed  CAS  Google Scholar 

  40. Chiu RCJ, Walsh GL, Dewar ML, De Simon JH, Khalafalla AS (1987) Implantable extra- aortic balloon assist powered by transformed fatigue-resistant skeletal muscle. J Thorac Cardiovasc Surg 94:694–701

    PubMed  CAS  Google Scholar 

  41. Chachques J, Grandjean P, Vasseur B, Hero M, Perier P, Bourgeois I, Fardeau M, Carpentier A (1985) Electrophysiological conditioning of latissimus dorsi muscle flap for myocardial assistance. In: Nose Y, Kjellstrand C, Ivanovich P (eds) Progress in artificial organs. ISAO Press, Cleveland, pp 409–12

    Google Scholar 

  42. Mannion JD, Velchik M, Alavi A, Stephenson LW (1985) Blood flow in conditioned and unconditioned latissimus dorsi muscle (abstract). Second Vienna Muscle Symposium, 1985, p 28

    Google Scholar 

  43. Glenn W, Phelps M (1985) Diaphragm pacing by electrical stimulation of the phrenic nerve. Neurosurgery 17:974–984

    Article  PubMed  CAS  Google Scholar 

  44. Ciesielski TE, Fukuda Y, Glenn W, Gorfien J, Jeffery K, Hogan JF (1983) Response of the diaphragm muscle to electrical stimulation of the phrenic nerve. J Neurosurg 58:92–100

    Article  PubMed  CAS  Google Scholar 

  45. Kim JH, Manuelidis EE, Glenn W, Fukuda Y, Cole DS, Hogan JF (1983) Light- and electron-microscopic studies of phrenic nerves after long-term electrical stimulation. J Neurosurg 58:84–91

    Article  PubMed  CAS  Google Scholar 

  46. Buller JC, Eccles JC, Eccles RM (1960) Differentiation of fast and slow muscles in the cat hind limb. J Physiol (Lond) 150:399–416

    CAS  Google Scholar 

  47. Buller JC, Eccles JC, Eccles RM (1960) Interactions between motor neurons and muscles in respect of the characteristic speeds of their responses. J Phyiol (Lond) 150:417–139

    CAS  Google Scholar 

  48. Salmons S, Vrbova G (1969) The influence of activity on some contractile characteristics of mammalian fast and slow muscles. J Physiol (Lond) 210:535–549

    Google Scholar 

  49. Chi et al. (1986) Chronic stimulation of mammalian muscle: enzyme changes in individual fibers. Am J Physiol C633–C642

    Google Scholar 

  50. Macoviak JA, Stephenson LW, Armenti F, Kelly AM, Alavi A, Mackler T, Cox J, Palatianois GM, Edmunds LH (1982) Electrical conditioning of in situ skeletal muscle for replacement of myocardium. J Surg Res 32:429–439

    Article  PubMed  CAS  Google Scholar 

  51. Armenti FR, Bitto T, Macoviak JA, Kelly AM, Chase CT, Hoffman BK, Rubinstein NA, St. John-Sutton M, Edmunds LH, Stephenson LW (1984) Transformation of skeletal muscle for cardiac replacement. Surg Forum 35:258–260

    Google Scholar 

  52. Bitto T, Mannion J, Hammond R, Cox J, Yamashita J, Duckett SW, Salmons S, Stephenson LW (1985) Preparation of fatigue-resistant diaphragmatic muscle grafts for myocardial replacement. In: Nose Y, Kjellstrand C, Ivanovich P (eds) Progress in artificial organs. ISAO Press, Cleveland, pp 441–446

    Google Scholar 

  53. Mannion JD, Bitto T, Hammond R, Rubinstein N, Stephenson LW (1986) Histochemical fatigue characteristics of conditioned canine latissimus dorsi muscle. Circ Res 58:298–304

    PubMed  CAS  Google Scholar 

  54. Mannion JD, Acker MA, Hammond RL, Stephenson LW, Khalafalla A, Henriksson J, Salmons S (in press) Chronic burst stimulation of canine latissimus dorsi muscle: a further step towards the use of skeletal muscle for cardiac augmentation. Proceedings, Padova muscle symposium, 1986

    Google Scholar 

  55. Acker MA, Mannion JD, Brown WE, Salmons S, Henriksson J, Bitto T, Gale DR, Hammond R, Stephenson LW (1987) Canine diaphragm muscle after one year of continuous electrical stimulation: its potential as a myocardial substitute. J Appl Physiol 62:1264–1270

    PubMed  CAS  Google Scholar 

  56. Clark BJ, Acker MA, Subramanian H, McCully K, Hammond B, Salmons S, Chance B, Stephenson LW (1988) In vivo P-NMR spectroscopy of electrically conditioned skeletal muscle. Am J Physiol 254:C-258–266

    CAS  Google Scholar 

  57. Acker MA, Anderson WA, Hammond RL, Di Meo F, McCullum J, Staum M, Velchik M, Brown WE, Gale D, Salmons S, Stephenson LW (1987) Oxygen consumption of fatigue-resistant muscle. J Thorac Cardiovasc Surg 94:702–709

    PubMed  CAS  Google Scholar 

  58. Stevens L, Brown J (1986) Can noncardiac muscle provide useful cardiac assistance? Am Surg 52:423–27

    PubMed  CAS  Google Scholar 

  59. Neilson IR, Brister SJ, Khalafalla AS, Chiu RCJ (1985) Left ventricular assistance in dogs using a skeletal muscle-powered device for diastolic augmentation. J Heart Transplant 4:343–347

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Andersen, J.S. et al. (1989). Biologic Cardiac Assist: Performance Characteristics. In: Unger, F. (eds) Assisted Circulation 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74404-4_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74404-4_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74406-8

  • Online ISBN: 978-3-642-74404-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics