Advertisement

Principles of Black Hole Energetics

  • Petr Hájíček
Conference paper

Abstract

These lectures introduce first the important notions of the theory of gravitational collapse and black hole physics like that of trapped surface, of apparent and event horizons. Then, the concepts of energy density and of the total energy in general relativity are explained, Nester’s expression for the total 4-momentum is written down and the positive energy theorems are reviewed. Finally, a report on the Hawking effect, on the calculations of the expected value of the stress-energy tensor, and on the back reaction problem is given. The lectures resort nowhere to a complicated mathematics, as all important logical relations can be clarified with the help of simple, spherically symmetrical models. Arguments are presented that the event horizon need not play such a crucial role in black hole physics as it is usually assumed.

Keywords

Black Hole Event Horizon Apparent Horizon Trap Surface Spacelike Hypersurface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. S. Thorne, R. H. Price, and D. A. Macdonald, ed.: “Black Holes: The Membrane Paradigm” . Yale University Press, New Haven, 1986.Google Scholar
  2. 2.
    G. T. Horowitz, and M. J. Perry: Gen. Rel. Grav. 15, 1 (1983)MathSciNetADSCrossRefGoogle Scholar
  3. 2.
    W. Israel: Can. J. Phys. 64, 120 (1986).MathSciNetADSMATHCrossRefGoogle Scholar
  4. 3.
    E. H. Lieb, and W. E. Thirring: Ann. Phys. 155, 494 (1984).MathSciNetADSCrossRefGoogle Scholar
  5. 4.
    D.N. Page: Phys. Rev. D13, 198 (1976).ADSGoogle Scholar
  6. 5.
    J. R. Oppenheimer, and H. Snyder: Phys. Rev. 56, 455 (1939).ADSMATHCrossRefGoogle Scholar
  7. 6.
    T. Pirani: in “Sources of Gravitational Radition”. Ed. by L. L. Smarr. Cambridge University Press, Cambridge, 1979.Google Scholar
  8. 7.
    C. W. Misner, K.S. Thorne, and J. A. Wheeler: “Gravitation”. Freeman, San Francisco, 1973.Google Scholar
  9. 8.
    S. W. Hawking, and J. F. R. Ellis: “The Large Scale Structure of Spacetime”. Cambridge, Cambridge University Press, 1973.CrossRefGoogle Scholar
  10. 9.
    R. Schoen, and S.-T. Yau: Commun. Math. Phys. 65, 45 (1979); Phys. Rev. Letters 43, 1457 (1979); Commun. Math. Phys. 79, 47 (1981); Commun. Math. Phys. 79, 231 (1981).MathSciNetADSMATHCrossRefGoogle Scholar
  11. 10.
    S. Deser, and C. Teitelboim: Phys. Rev. Letters 39, 249 (1977).ADSCrossRefGoogle Scholar
  12. 11.
    E. Witten: Commun. Math. Phys. 80, 381 (1981).MathSciNetADSCrossRefGoogle Scholar
  13. 12.
    G. T. Horowitz: in “Asymptotic Behaviour of Mass and Spacetime Geometry”. Ed. by F. J. Flaherty. Springer, Berlin, 1984.Google Scholar
  14. 13.
    R. Penrose: in “Battelle Rencontres”. Ed. by C. DeWitt, and J. A. Wheeler. Benjamin, New York, 1968.Google Scholar
  15. 14.
    N. O. Murchadha, and J. W. York, Jr.: Phys. Rev. D10, 428 (1974).ADSGoogle Scholar
  16. 15.
    A. Ashtekar: in “Asymptotic Behaviour of Mass and Spacetime Geometry”. Ed. by F. J. Flaherty. Springer, Berlin, 1984.Google Scholar
  17. 16.
    O. Reula: J. Math. Phys. 23, 810 (1982).MathSciNetADSMATHCrossRefGoogle Scholar
  18. 17.
    T. Parker, and C. Taubes: Commun. Math. Phys. 84, 223 (1982).MathSciNetADSMATHCrossRefGoogle Scholar
  19. 18.
    O. Reula, and P. Tod: J. Math. Phys. 25, 1004 (1984).MathSciNetADSCrossRefGoogle Scholar
  20. 19.
    S. W. Hawking: Commun. Math. Phys. 43, 199 (1975).MathSciNetADSCrossRefGoogle Scholar
  21. 20.
    D. Boulware: Phys. Rev. D13, 2169 (1976).ADSGoogle Scholar
  22. 21.
    N.D. Birrell, and P.C.W. Davies: “Quantum Fields in Curved Space”. Cambridge University Press, Cambridge, 1982.MATHGoogle Scholar
  23. 22.
    K.W. Howard: Phys. Rev. D30, 2532 (1984).ADSGoogle Scholar
  24. 23.
    B. S. Kay, and R. M. Wald: in “An Italian Conference on General Relativity and Gravitational Physics”. Ed. by U. Bruzzo, R. Cianci, and E. Massa. World Scientific, Singapore, 1987.Google Scholar
  25. 24.
    S. A. Fulling, M. Sweeny, and R. M. Wald: Commun. Math. Phys. 63, 257 (1978).MathSciNetADSMATHCrossRefGoogle Scholar
  26. 25.
    J. W. York, Jr.: Phys. Rev. D15, 775 (1985).MathSciNetADSGoogle Scholar
  27. 26.
    S.W. Hawking: Commun. Math. Phys. 18, 301 (1970).MathSciNetADSMATHCrossRefGoogle Scholar
  28. 27.
    P. Hajicek: Phys. Rev. D36, 1065 (1987).MathSciNetADSGoogle Scholar
  29. 28.
    J. W. York, Jr.: in “Quantum Theory of Gravity. Essays in Honor of the 60th Birthday of Bryce S. DeWitt”. Ed. by S. M. Christensen. A. Hilger, Bristol, 1984.Google Scholar
  30. 29.
    P. Hajicek, and W. Israel: Phys. Letters 80A, 9 (1980).MathSciNetADSGoogle Scholar
  31. 30.
    F. J. Tipler, C.J. S. Clark, and G. F. R. Ellis: in “General Relativity and Gravitation”, Vol. II. Ed. by A. Held. Plenum Press, New York, 1980.Google Scholar
  32. 31.
    S.W. Hawking: Phys. Rev. D14, 2460 (1976).MathSciNetADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Petr Hájíček
    • 1
  1. 1.Inst. for Theoretical PhysicsUniversity of BerneBerneSwitzerland

Personalised recommendations