Advertisement

Halophilic Archaebacteria

  • Barbara Javor
Part of the Brock/Springer Series in Contemporary Bioscience book series (BROCK/SPRINGER)

Abstract

The bacteria to be discussed in this chapter are so widespread in high salt environments that they virtually define the hypersaline niche. Often highly pigmented, they are mainly responsible for the intense reddish color of salterns and salt lakes. Indeed, solar salt crystals are themselves frequently pink in color due to entrapped halobacteria, and cultures can often be prepared from such sources. Fish preserved in brines frequently exhibit extensive hal-obacterial growth and the first pure cultures were isolated from these sources.

Keywords

Glycine Betaine Halophilic Bacterium Hypersaline Environment Salted Fish Solar Salt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitken, D.M. and Brown, A.D. 1969. Citrate and glyoxylate cycles in the halophil, Halobacterium salinarium. Biochimica et Biophysica Acta 177: 351–354.Google Scholar
  2. Alam, M., Claviez, M., Oesterhelt, D., and Kessel, M. 1984. Flagella and motility behaviour of square bacteria. EMBO Journal 3: 2899–2903.PubMedGoogle Scholar
  3. Anderson, R., Kates, M., Baedecker, M.J., Kaplan, I.R., and Ackman, R.G. 1977. The stereoisomeric composition of phytanyl chains in lipids of Dead Sea sediments. Geochimica et Cosmochimica Acta 41: 1381–1390.Google Scholar
  4. Baryshev, V.A. 1982. Regulation of Halobacterium halobium motility by the Mg2+and Ca2+ ions. FEMS Microbiology Letters 14: 139–143.Google Scholar
  5. Bayley, S.T. 1976. Information transfer: salt effects, pp. 119–136 in Heinrich, M.R. (editor), Extreme Environments. Mechanisms of Microbial Adaptation, Academic Press, New York.Google Scholar
  6. Bivin, D.B. and Stoeckenius, W. 1986. Photoactive retinal pigments in haloalkaliphilic bacteria. Journal of General Microbiology 132: 2167–2177.PubMedGoogle Scholar
  7. Bonelo, G., Ventosa, A., Megias, M., and Ruiz-Berraquero, F. 1984. The sensitivity of halobacteria to antibiotics. FEMS Microbiology letters 21: 341–345.Google Scholar
  8. Brock, T.D. and Peterson, S. 1976. Some effects of light on the viability of rhodopsin-containing halobacteria. Archives of Microbiology 109: 199–200.PubMedGoogle Scholar
  9. Brown, A.D. 1983. Halophilic prokaryotes, pp. 137–162 in Lange, O.L., Nobel, P.S., Osmond, C.B. and Ziegler, H. (editors), Physiological Plant Ecology III, Springer-Verlag, New York.Google Scholar
  10. Carteni-Farina, M., Porcelli, M., Cacciapuoti, G., de Rosa, M., Gambacorta, A., Grant, W.D., and Ross, H.N.M. 1985. Polyamines in halophilic archaebacteria. FEMS Microbiology Letters 28: 323–327.Google Scholar
  11. Chen, K.Y. and Martinowicz, H. 1984. Lack of detectable polyamines in an extremely halophilic bacterium. Biochemical and Biophysical Research Communications 124: 423–429.PubMedGoogle Scholar
  12. Christian, J.H.B. and Waltho, J.A. 1962. Solute concentrations within cells of halophilic and non-halophilic bacteria. Biochimica et Biophysica Acta 65: 506–508.PubMedGoogle Scholar
  13. Cohen, S., Oren, A., and Shilo, M. 1983. The divalent cation requirement of Dead Sea halobacteria. Archives of Microbiology 136: 184–190.Google Scholar
  14. Collins, M.D. and Tindall, B.J. 1987. Occurrence of menaquinones and some novel methylated menaquinones in the alkaliphilic, extremely halophilic archaebacterium Natronobacterium gregoryi. FEMS Microbiology Letters 43: 307–312.Google Scholar
  15. Colwell, R.R., Litchfield, C.D., Vreeland, R.H., Kiefer, L.A., and Gibbons, N.E. 1979. Taxonomic studies of red halophilic bacteria. International Journal of Systematic Bacteriology 29: 379–399.Google Scholar
  16. Conway de Macario, E., Konig, H., and Macario, A.J.L. 1986. Immunologic distinctiveness of archaebacteria that grow in high salt. Journal of Bacteriology 168: 425–427.PubMedGoogle Scholar
  17. Danon, A. and Caplan, S.R. 1979. CO2 fixation by Halobacterium halobium. FEBS Letters 74: 255–258.Google Scholar
  18. Danson, M.J., Black, S.C., Woodland, D.L., and Wood, P.A. 1985. Citric acid cycle enzymes of the archaebacteria: citrate synthase and succinate thiokinase. FEBS Letters 179: 120–124.Google Scholar
  19. Dencher, N.A. and Hildebrand, E. 1979. Sensory transduction in Halobacterium hal-obium: retinal protein pigment controls UV-induced behavioral response. Zeitschrift für Naturforschungen 34c: 841–847.Google Scholar
  20. Dencher, N.A. and Hildebrand, E. 1982. Photobehavior of Halobacterium halobium. Methods in Enzymology 88: 420–426.Google Scholar
  21. De Rosa, M., Gambacorta, A., Nicolaus, B., Ross, H.N.M., Grant, W.D., and Bu’Lock, J.D. 1982. An asymmetric archaebacterial diether lipid from alkaliphilic halophiles. Journal of General Microbiology 128: 343–348.Google Scholar
  22. De Rosa, M., Gambacorta, A., Nicolaus, B., and Grant, W.D. 1983. A C25,C25 diether core lipid from archaebacterial haloalkalophiles. Journal of General Microbiology 129: 2333–2337.Google Scholar
  23. De Rosa, M., Gambacorta, A., and Gliozzi, A. 1986. Structure, biosynthesis, and physiocochemical properties of archaebacterial lipids. FEMS Microbiology Reviews 50: 70–80.Google Scholar
  24. De Rosa, M., Gambacorta, A., Grant, W.D., Lanzotti, V., and Nicolaus, B. 1988. Polar lipids and glycine betaine from haloalkaliphilic bacteria. Journal of General Microbiology 134: 205–211.Google Scholar
  25. Dundas, I.E.D. 1977. Physiology of Halobacteriaceae. Advances in Microbial Physiology 15: 85–120.PubMedGoogle Scholar
  26. Dussault, H.P. 1954. Destruction of ‘red halophiles’ by antagonistic bacteria. Gaspé Fisheries Experimental Station Note 34: 3–5.Google Scholar
  27. Edgerton, M.E. and Brimblecombe, P. 1981. Thermodynamics of halobacterial environments. Canadian Journal of Microbiology 27: 899–909.PubMedGoogle Scholar
  28. Elazari-Volcani, B. 1940. Studies on the Microflora of the Dead Sea. Ph.D. Thesis. Hebrew University of Jerusalem. 119 pp.Google Scholar
  29. Fernandez-Castillo, R., Rodriguez-Valera, F., Gonzalez-Ramos, J., and Ruiz-Berraquero, F. 1986. Accumulation of poly(β-hydroxybutyrate) by halobacteria. Applied and Environmental Microbiology 51: 214–216.PubMedGoogle Scholar
  30. Forterre, P., Elie, C., and Kohiyama, M. 1984. Aphidicolin inhibits growth and DNA synthesis in halophilic archaebacteria. Journal of Bacteriology 159: 800–802.PubMedGoogle Scholar
  31. Giani, D., Giani, L., Cohen, Y., and Krumbein, W.E. 1984. Methanogenesis in the hypersaline Solar Lake (Sinai). FEMS Microbiology letters 25: 219–224.Google Scholar
  32. Gibbons, N.W. 1958. The effect of salt on the metabolism of halophilic bacteria, pp. 69–76 in Eddy, B.P. (editor), Proceedings of the Second International Symposium on Food Microbiology, H.M. Stationery Office, London.Google Scholar
  33. Ginzburg, M., Sachs, L., and Ginzburg, B.A. 1970. Ion metabolism in a Halobacterium. I. Influence of age of culture on intracellular concentrations. Journal of General Physiology 55: 187–207.PubMedGoogle Scholar
  34. Gochnauer, M.B., Kushwaha, S.C., Kates, M., and Kushner, D.J. 1972. Nutritional control of pigment and isoprenoid compound formation in extremely halophilic bacteria. Archiv für Mikrobiologie 84: 339–349.Google Scholar
  35. Gonzalez, C, Gutierrez, C., and Ramirez, C. 1978. Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Canadian Journal of Microbiology 24: 710–715.PubMedGoogle Scholar
  36. Good, W.A. and Hartman, P.A. 1970. Properties of the amylase from Halobacterium halobium. Journal of Bacteriology 104: 601–603.PubMedGoogle Scholar
  37. Grant, W.D. and Tindall, B.J. 1980. The isolation of alkalophilic bacteria, pp. 27–38 in Gould, G.W. and Corry, J.E.C. (editors), Microbial Growth and Survival in Extremes of Environment, Society of Applied Bacteriology Technical Service 15, Academic Press, New York.Google Scholar
  38. Grant, W.D. and Tindall, B.J. 1986. The alkaline saline environment, p. 25–54 in Herbert, R.A. and Codd, G.A. (editors), Microbes in Extreme Environments. Society of General Microbiology Special Publication 17, Academic Press, London.Google Scholar
  39. Grant, W.D., Pinch, G., Harris, J.E., De Rosa, M., and Gambacorta, A. 1985. Polar lipids in methanogen taxonomy. Journal of General Microbiology 131: 3277–3286.Google Scholar
  40. Gutierrez, M.C., Garcia, M.T., Ventosa, A., Nieto, J.J., and Ruiz-Berraquero, F. 1986. Occurrence of megaplasmids in halobacteria. Journal of Applied Bacteriology 61: 67–71.Google Scholar
  41. Hamana, K., Kamekura, M., Onishi, H., Akazawa, T., and Matsuzaki, S. 1985. Po-lyamines in photosynthetic eubacteria and extreme-halophilic archaebacteria. Journal of Biochemistry (Japan) 97: 1653–1658.Google Scholar
  42. Hartmann, R., Sickinger, H.-D., and Oesterhelt, D. 1980. Anaerobic growth of halobacteria. Proceedings of the National Academy of Science U.S.A. 77: 3821–3825.Google Scholar
  43. Hochstein, L.I. 1988. The physiology and metabolism of the extremely halophilic bacteria, p. 67–83 in Rodriguez-Valera, F. (editor), Halophilic Bacteria, Vol. II. CRC Press, Boca Raton.Google Scholar
  44. Hochstein, L.I. and Tomlinson, G.A. 1985. Denitrification by extremely halophilic bacteia. FEMS Microbiology Letters 27: 329–331.PubMedGoogle Scholar
  45. Hunter, M.I.S. and Millar, S.J.W. 1980. Effect of wall antibiotics on the growth of the extremely halophilic coccus, Sarcina marina NCMB 778. Journal of General Microbiology 120: 255–258.Google Scholar
  46. Javor, B.J. 1983. Planktonic standing crop and nutrients in a saltern ecosystem. Limnology and Oceanography 28: 153–159.Google Scholar
  47. Javor, B.J. 1984. Growth potential of halophilic bacteria isolated from solar salt environments: carbon sources and salt requirements. Applied and Environmental Microbiology 48: 352–360.PubMedGoogle Scholar
  48. Javor, B.J. 1988. CO2 fixation in halobacteria. Archives of Microbiology 149: 433–440.Google Scholar
  49. Javor, B., Requadt, C., and Stoeckenius, W. 1982. Box-shaped halophilic bacteria. Journal of Bacteriology 151: 1532–1542.PubMedGoogle Scholar
  50. Juez, G. 1988. Taxonomy of extremely halophilic archaebacteria, p. 3–24 in Rodriguez-Valera, F. (editor), Halophilic Bacteria, Vol. II. CRC Press, Boca Raton.Google Scholar
  51. Juez, G., Rodriguez-Valera, F., Ventosa, A., and Kushner, D.J. 1986. Haloarcula hispanica spec. nov. and Haloferax gibbonsii spec. nov., two new species of extremely halophilic archaebacteria. Systematic and Applied Microbiology 8: 75–79.Google Scholar
  52. Kamekura, M. and Kates, M. 1988. Lipids of halophilic archaebacteria, p. 25–54 in Rodriguez-Valera, F. (editor), Halophilic Bacteria, Vol. II. CRC Press, Boca Raton.Google Scholar
  53. Kamekura, M., Bardocz, S., Anderson, P., Wallace, R., and Kushner, D.J. 1986. Polyamines in moderately and extremely halophilic bacteria. Biochimica et Biophysica Acta 880: 204–208.Google Scholar
  54. Kandier, O. 1982. Cell wall structures and their phylogenetic implications, pp. 149–160 in Kandier, O. (editor), Archaebacteria, Gustav Fischer, New York.Google Scholar
  55. Kaplan, I.R. and M.J. Baedecker. 1970. Biological productivity in the Dead Sea. Part II. Evidence for phosphatidyl glycerophosphate lipid in sediment. Israel Journal of Chemistry 8: 529–533.Google Scholar
  56. Katznelson, H. and Robinson, J. 1956. Observations on the respiratory activity of certain obligately halophilic bacteria with high salt requirements. Journal of Bacteriology 71: 244–249.PubMedGoogle Scholar
  57. Kessel, M. and Cohen, Y. 1982. Ultrastructure of square bacteria from a brine pool in southern Sinai. Journal of Bacteriology 150: 851–860.PubMedGoogle Scholar
  58. Kessel, M., Cohen, Y., and Walsby, A.E. 1985. Structure and physiology of square-shaped and other halophilic bacteria from the Gavish Sabkha, pp. 267–287 in Friedman, G.M. and Krumbein, W.E. (editors), Hypersaline Ecosystems. The Gavish Sabkha, Ecological Studies 53, Springer-Verlag, New York.Google Scholar
  59. Kocur, M. and Bohacek, J. 1972. DNA base composition of extremely halophilic cocci. Archiv für Mikrobiologie 82: 280–282.PubMedGoogle Scholar
  60. Kocur, M. and Hodgkiss, W. 1973. Taxonomic status of the genus Halococcus Schoop. International Journal of Systematic Bacteriology 23: 151–156.Google Scholar
  61. Kushner, D.J. 1978. Life in high salt and solute concentrations: Halophilic bacteria, pp. 317–368 in Kushner, D.J. (editor), Microbial Life in Extreme Environments, Academic Press, London.Google Scholar
  62. Kushner, D.J. 1985. The Halobacteriaceae, pp. 171–215 in Woese, C.R. and Wolfe, R.S. (editors), The Bacteria. A Treatise on Structure and Function, Vol. VIII, Archaebacteria. Academic Press, New York.Google Scholar
  63. Kushwaha, S.C. and Kates, M. 1979. Effect of glycerol on carotenogenesis in the extreme halophile, Halobacterium cutirubrum. Canadian Journal of Microbiology 25: 1288–1291.Google Scholar
  64. Kushwaha, S.C., Juez-Perez, G., Rodriguez-Valera, F., Kates, M., and Kushner, D.J. 1982. Survey of lipids of a new group of extremely halophilic bacteria from salt ponds in Spain. Canadian Journal of Microbiology 28: 1365–1372.Google Scholar
  65. Langworthy, T.A., Tornabene, T.G., and Holzer, G. 1982. Lipids of archaebacteria, pp. 228–244 in Kandier, O. (editor), Archaebacteria, Gustav Fischer, New York.Google Scholar
  66. Langworthy, T.A., Holzer, G., Zeikus, J.G., and Tornabene, T.G. 1983. Iso- and anteiso-branched glycerol diethers of the thermophilic anaerobe Thermodesulfoto-bacterium commune. Systematic and Applied Microbiology 4: 1–17.Google Scholar
  67. Lanyi, J.K. 1976. Membrane structure and salt dependence in extremely halophilic bacteria, pp. 295–303 in Heinrich, M.R. (editor), Extreme Environments. Mechanisms of Microbial Adaptations. Academic Press, New York.Google Scholar
  68. Lanyi, J.K. 1980. Physical chemistry and evolution of salt tolerance in halobacteria. Origins of life 10: 161–167.Google Scholar
  69. Larsen, H. 1981. The family Halobacteriaceae, pp. 985–994 in Starr, M.P., Stolp, H., Trüper, H.G., Balows, A. and Schlegel, H.G. (editors), The Prokaryotes: A Handbook on Habitats, Isolation, and Identification of Bacteria, vol. 1, Springer-Verlag, New York.Google Scholar
  70. Larsen, H. 1984. Family V. Halobacteriaceae Gibbons 269AL pp. 261–267 in Krieg, N.R. and Holt, J.G. (editors), Bergey’s Manual of Systematic Bacteriology, vol. 1, 9th Edition, Williams and Wilkins, Baltimore.Google Scholar
  71. Luehrsen, K., Nicholson, D.E., and Fox, G.E. 1985. Widespread distribution of a 7S RNA in archaebacteria. Current Microbiology 12: 69–72.PubMedGoogle Scholar
  72. Mancinelli, R.L. and Hochstein, L.I. 1986. The occurrence of denitrification in extremely halophilic bacteria. FEMS Microbiology Letters 35: 55–58.PubMedGoogle Scholar
  73. Mathrani, I.M. and D.R. Boone. 1985. Isolation and characterization of a moderately halophilic methanogen from a solar saltern. Applied and Environmental Microbiology 50: 140–143.PubMedGoogle Scholar
  74. Mathrani, I.M., Boone, D.R., Mah, R.A., Fox, G.E., and Lau, P.P. 1988. Methanohalophilus zhilinae sp. nov., an alkaliphilic, halophilic, methylotrophic methanogen. International Journal of Systematic Bacteriology 38: 139–142.PubMedGoogle Scholar
  75. Matsuoka, H., Suzuki, S., Aizawa, M., Kimura, Y., and Ikegami, A. 1981. Role of magnesium in the membrane systems of Halobacterium halobium. Journal of Applied Biochemistry 3: 425–436.Google Scholar
  76. Meseguer, I. and Rodriguez-Valera, F. 1985. Production and purification of halocin H4. FEMS Microbiology Letters 28: 177–182.Google Scholar
  77. Moore, R.L. and McCarthy, B.J. 1969a. Characterization of the deoxyribonucleic acid of various strains of halophilic bacteria. Journal of Bacteriology 99: 248–254.PubMedGoogle Scholar
  78. Moore, R.L. and McCarthy, B.J. 1969b. Base sequence homology and renaturation studies of the deoxyribonucleic acid of extremely halophilic bacteria. Journal of Bacteriology 99: 255–262.PubMedGoogle Scholar
  79. Morth, S. and Tindall, B.J. 1985a. Evidence that changes in the growth conditions affect the relative distribution of diether lipids in haloalkaliphilic archaebacteria. FEMS Microbiology Letters 29: 285–288.Google Scholar
  80. Morth, S. and Tindall, B.J. 1985b. Variation of polar lipid composition within haloalkaliphilic archaebacteria. Systematic and Applied Microbiology 6: 247–250.Google Scholar
  81. Mullakhanbhai, M.F. and Larsen, H. 1975. Halobacterium volcanii spec. nov., a Dead Sea halobacterium with a moderate salt requirement. Archives of Microbiology 104: 207–214.PubMedGoogle Scholar
  82. Newton, G.I. and Javor, B.J. 1985. γ-Glutamylcysteine and thiosulfate are the major low molecular weight thiols in halobacteria. Journal of Bacteriology 161: 438–441.PubMedGoogle Scholar
  83. Nicholson, D.E. and Fox, G.E. 1983. Molecular evidence for a close phylogenetic relationship among box-shaped halophilic bacteria, Halobacterium vallismortis and Halobacterium marismortui. Canadian Journal of Microbiology 29: 52–59.Google Scholar
  84. Nissenbaum, A. Baedecker, M.J., and Kaplan, I.R. 1972. Organic geochemistry of Dead Sea sediments. Geochimica et Cosmochimica Acta 36: 709–727.Google Scholar
  85. Norberg, P. and B.v. Hofsten. 1969. Proteolytic enzymes from extremely halophilic bacteria. Journal of General Microbiology 55: 251–256.PubMedGoogle Scholar
  86. Oesterhelt, D. 1982. Anaerobic growth of halobacteria. Methods in Enzymology 88: 417–420.Google Scholar
  87. Oesterhelt, D. and Krippahl, G. 1973. Light inhibition of respiration in Halobacterium halobium. FEBS Letters 36: 72–76.Google Scholar
  88. Oesterhelt, D. and Krippahl, G. 1983. Phototrophic growth of halobacteria and its use for isolation of photosynthetically-deficient mutants. Annales de Microbiologie (Institute Pasteur) 134 B: 137–150.Google Scholar
  89. Onishi, H., McCance, M.E., and Gibbons, N.E. 1965. A synthetic medium for extremely halophilic bacteria. Canadian Journal of Microbiology 11: 365–373.PubMedGoogle Scholar
  90. Oremland, R.S., Marsh, L., and Des Marais, D.J. 1982. Methanogenesis in Big Soda Lake, Nevada: an alkaline, moderately hypersaline desert lake. Applied and Environmental Microbiology 43: 462–468.PubMedGoogle Scholar
  91. Oren, A. 1983a. A thermophilic amyloglucosidase from Halobacterium sodomense, a halophilic bacterium from the Dead Sea. Current Microbiology. 8: 225–230.Google Scholar
  92. Oren, A. 1983b. Bacteriorhodopsin-mediated CO2 photoassimilation in the Dead Sea. Limnology and Oceanography 28: 33–41.Google Scholar
  93. Oren, A. 1983c. Halobacterium sodomense sp. nov., a Dead Sea halobacterium with an extremely high magnesium requirement. International Journal of Systematic Bacteriology 33: 381–386.Google Scholar
  94. Oren, A. and Shilo, M. 1981. Bacteriorhodopsin in a bloom of halobacteria in the Dead Sea. Archives of Microbiology 130: 185–187.Google Scholar
  95. Parkes, K. and Walsby, A.E. 1981. Ultrastructure of a gas-vacuolate square bacterium. Journal of General Microbiology 126: 503–506.Google Scholar
  96. Paterek, J.R. and Smith, P.H. 1985. Isolation and characterization of a halophilic methanogen from Great Salt Lake. Applied and Environmental Microbiology 50: 877–881.PubMedGoogle Scholar
  97. Paterek, J.R. and Smith, P.H. 1988. Methanohalophilus mahii gen. nov., sp.nov., a methylotrophic methanogen. International Journal of Systematic Bacteriology 38: 122–123.Google Scholar
  98. Pauling, C. 1982. Bacteriophages of Halobacterium halobium: isolation from fermented fish sauce and primary characterization. Canadian Journal of Microbiology 28: 916–921.PubMedGoogle Scholar
  99. Pecher, T. and Böck, A. 1981. In vivo susceptibility of halophilic and methanogenic organisms to protein synthesis inhibitors. FEMS Microbiology Letters 10: 295–297.Google Scholar
  100. Petter, H.F.M. 1931. On bacteria of salted fish. Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam. Afdeeling Natuurkunde 34: 1417–1423.Google Scholar
  101. Pfeifer, F. 1988. Genetics of halobacteria, p. 105–133 in Rodriguez-Valera, F. (editor), Halophilic Bacteria, Vol. II. CRC Press, Boca Raton.Google Scholar
  102. Pfeifer, F., Weidinger, G., and Goebel, W. 1981. Characterization of plasmids in halobacteria. Journal of Bacteriology 145: 369–374.PubMedGoogle Scholar
  103. Plotkin, B., Boyd, M.S., Palmer, P.L., and Sherman, W.V. 1985. Temperature dependence of the photoresponse of Halobacterium halobium. Current Microbiology 12: 97–100.Google Scholar
  104. Rayman, M.K., Gordon, R.C., and MacLeod, R.A. 1967. Isolation of a Mg2+ phospholipid from Halobacterium cutirubrum. Journal of Bacteriology 93: 1465–1470.PubMedGoogle Scholar
  105. Reistad, R. 1975. Amino sugar and amino acid constituents of the cell walls of extremely halophilic cocci. Archives of Microbiology 102: 71–73.PubMedGoogle Scholar
  106. Rodriguez-Valera, F. 1988. Characteristics and microbial ecology of hypersaline environments in Rodriguez-Valera, F. (editor), Halophilic Bacteria, Vol. I. CRC Press, Boca Raton.Google Scholar
  107. Rodriguez-Valera, F., Ruiz-Berraquero, F., and Ramos-Cormenzana, A. 1979. Isolation of extreme halophiles from seawater. Applied and Environmental Microbiology 38: 164–165.PubMedGoogle Scholar
  108. Rodriguez-Valera, F., Ruiz-Berraquero, F., and Ramos-Cormenzana, A. 1980. Isolation of extremely halophilic bacteria able to grow on defined inorganic media with single carbon sources. Journal of General Microbiology 119: 535–538.Google Scholar
  109. Rodriguez-Valera, F., Ruiz-Berraquero, F., and Ramos-Cormenzana, A. 1981. Characteristics of the heterotrophic populations in hypersaline environments of different salt concentrations. Microbial Ecology 7: 235–243.Google Scholar
  110. Rodriguez-Valera, F., Juez, G., and Kushner, D.J. 1982. Halocins: salt-dependent bacteriocins produced by extremely halophilic rods. Canadian Journal of Microbiology 28: 151–154.Google Scholar
  111. Rodriguez-Valera, F., Ventosa, A., Quesada, E., and Ruiz-Berraquero, F. 1982b. Some physiological features of a Halococcus sp. at low salt concentrations. FEMS Microbiology Letters 15: 249–252.Google Scholar
  112. Rodriguez-Valera, F., Juez, G. and Kushner, D.J., 1983a. Halobacterium mediterranei, spec. nov., a new carbohydrate-utilizing extreme halophile. Systematic and Applied Microbiology 4: 369–381.Google Scholar
  113. Rodriguez-Valera, F., Nieto, J.J., and Ruiz-Berraquero, F. 1983b. Light as an energy source in continuous cultures of bacteriorhodopsin-containing halobacteria. Applied and Environmental Microbiology 45: 868–871.PubMedGoogle Scholar
  114. Rodriguez-Valera, F, Ventosa, A., Juez, G., and Imhoff, J.F. 1985. Variation of environmental features and microbial populations with salt concentration in a multi-pond saltern. Microbial Ecology 11: 107–115.Google Scholar
  115. Rohrmann, G.F. and Cheney, R. 1983. Bacteriophages of Halobacterium halobium: virion DNAs and proteins. Canadian Journal of Microbiology 29: 627–629.PubMedGoogle Scholar
  116. Romanenko, V.I. 1981. Square microcolonies in the surface saline water film of the Saxkoye Lake. Mikrobiologiya 50: 571–574.Google Scholar
  117. Ross, H.N.M. and Grant, W.D. 1985. Nucleic acid studies on halophilic archaebacteria. Journal of General Microbiology 131: 165–173.PubMedGoogle Scholar
  118. Sapienza, C. and Doolittle, W.F. 1982. Unusual physical organization of the Halobacterium genome. Nature (London) 295: 384–389.Google Scholar
  119. Schinzel, R. and Burger, K.J. 1984. Sensitivity of halobacteria to aphidicolin, an inhibitor of eukaryotic a-type DNA polymerase. FEMS Microbiology Letters 25: 187–190.Google Scholar
  120. Schnabel, H. 1984a. An immune strain of Halobacterium halobium carries the invertible L segment of phage øH as a plasmid. Proceedings of the National Academy of Science U.S.A. 81: 1017–1020.Google Scholar
  121. Schnabel, H. 1984b. Integration of plasmid pøHL into phage genomes during infection of Halobacterium halobium Rl-L with phage 0HL1. Molecular and General Genetics 197: 19–23.Google Scholar
  122. Schnabel, H. and Zillig, W. 1982. Halobacterium halobium phage øH, p. 352 in Kandier, O. (editor), Archaebacteria, Gustav Fischer, New York.Google Scholar
  123. Schnabel, H. and Zillig, W. 1984. Circular structure of the genome of phage øH in a lysogenic Halobacterium halobium. Molecular and General Genetics 193: 422–426.Google Scholar
  124. Schnabel, H., Zillig, W., Pfaffle, M., Schnabel, R., Michel, H., and Delius, H. 1982a. Halobacterium halobium phage øH. EMBO Journal 1: 87–92.PubMedGoogle Scholar
  125. Schnabel, H., Schramm, E., Schnabel, R., and Zillig, W. 1982b. Structural variability in the genome of phage øH of Halobacterium halobium. Molecular and General Genetics 188: 370–377.Google Scholar
  126. Schoop, G. 1934a. Halophile microbes in foodstuffs. Deutschen Tierartzlichen Wochenschrift 42: 816–819.Google Scholar
  127. Schoop, G. 1934b. Salt bacteria. Deutschen Tierartzlichen Wochenschrift 13: 205–207.Google Scholar
  128. Schoop, G. 1935. Obligat Halophile Mikroben. Zentralblatt für Bakteriologie Abteilung I 134: 14–26.Google Scholar
  129. Soliman, G.S.H. and Trüper, H.G. 1982. Halobacterium pharaonis sp. nov., a new, extremely haloalkalophilic archaebacterium with low magnesium requirement, pp. 318–329 in Kandier, O. (editor), Archaebacteria, Gustav Fischer, New York.Google Scholar
  130. Spudich, J. 1985. Sensory transduction by phototactic halobacteria. Einstein Quarterly Journal of Biology and Medicine 3: 97–103.Google Scholar
  131. Steber, J. and Schleifer, K.H. 1975. Halococcus morrhuae: a sulfated heteropolysac-charide as the structural component of the bacterial cell wall. Archives of Microbiology 105: 173–177.PubMedGoogle Scholar
  132. Stetter, K.O., Lauerer, G., Thomm, M., and Neuner, A. 1987. Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of archaebacteria. Science 236: 822–824.PubMedGoogle Scholar
  133. Stoeckenius, W. 1981. Walsby’s square bacterium: fine structure of an orthogonal procaryote. Journal of Bacteriology 148: 352–360.PubMedGoogle Scholar
  134. Stoeckenius, W. and Bogomolni, R.A. 1982. Bacteriorhodopsin and related pigments of halobacteria. Annual Review of Biochemistry 52: 587–616.Google Scholar
  135. Stoeckenius, W., Lozier, R.H., and Bogomolni, R.A. 1979. Bacteriorhodopsin and the purple membrane of halobacteria. Biochimica et Biophysica Acta 505: 215–278.PubMedGoogle Scholar
  136. Stoeckenius, W., Bivin, D., and McGinnis, K. 1985. Photoactive pigments in halobacteria from Gavish Sabkha, pp. 288–295 in Friedman, G.M. and Krumbein, W.E. (editors), Hypersaline Ecosystems. The Gavish Sabkha. Ecological Studies 53, Springer-Verlag, New York.Google Scholar
  137. Stuart, L.S. 1935. The morphology of bacteria causing reddening of salted hides. Journal of the American Leather Chemists Association 30: 226–235.Google Scholar
  138. Stuart, L.S. 1936. A note of halophilic chitinovorous bacteria. Journal of the American Leather Chemists Association 31: 119–120.Google Scholar
  139. Stuart, L.S. 1941a. Effect of protein concentration and cysteine on growth of halophilic bacteria. Journal of Agricultural Research 61: 267–276.Google Scholar
  140. Stuart, L.S. 1941b. The growth of halophilic bacteria in concentrations of sodium chloride above three molar. Journal of Agricultural Research 61: 259–266.Google Scholar
  141. Stuart, L.S. and James, L.H. 1938a. The effect of Eh and sodium chloride concentration on the physiology of halophilic bacteria. Journal of Bacteriology 35: 381–396.PubMedGoogle Scholar
  142. Stuart, L.S. and James, L.H. 1938b. The effect of sodium chloride on the Eh of protogenous media. Journal of Bacteriology 35: 369–380.PubMedGoogle Scholar
  143. Takahashi, T., Tomioka, H., Kamo, N., and Kobatake, Y. 1985a. A photosystem other than PS370 also mediates the negative phototaxis of Halobacterium halobium. FEMS Microbiology Letters 28: 161–164.Google Scholar
  144. Takahashi, T., Watanabe, M., Kamo, N., and Kobatake, Y. 1985b. Negative phototaxis from blue light and the role of third rhodopsinlike pigment in Halobacterium cu-tirubrum. Biophysical Journal 48: 235–240.PubMedGoogle Scholar
  145. Tew, R.W. 1980. Halotolerant Ectothiorhodospira survival in mirabilite: experiments with a model of chemical stratification by hydrate deposition in saline lakes. Geo-microbiology Journal 2: 13–20.Google Scholar
  146. Tindall, B.J. 1985. Qualitative and quantitative distribution of diether lipids in haloal-kliphilic archaebacteria. Systematic and Applied Microbiology 6: 243–246.Google Scholar
  147. Tindall, B.J. 1988. Prokaryotic life in the alkaline, saline, athalassic environment, p. 31–67 in Rodriguez-Valera, F. (editor), Halophilic Bacteria, Vol. I. CRC Press, Boca Raton.Google Scholar
  148. Tindall, B.J. and Trüper, H.G. 1986. Ecophysiology of the aerobic halophilic archaebacteria. Systematic and Applied Microbiology 7: 202–212.Google Scholar
  149. Tindall, B.J., Mills, A.A., and Grant, W.D. 1980. An alkalophilic red halophilic bacterium with a low magnesium requirement from a Kenyan soda lake. Journal of General Microbiology 116: 257–260.Google Scholar
  150. Tindall, B.J., Ross, H.N.M., and Grant, W.D. 1984. Natronobacterium gen. nov. and Natronococcus, gen. nov., two new genera of haloalkalophilic archaebacteria. Systematic and Applied Microbiology 5: 41–57.Google Scholar
  151. Tomlinson, G.A. and Hochstein, L.I. 1972. Isolation of carbohydrate-metabolizing, extremely halophilic bacteria. Canadian Journal of Microbiology 18: 698–701.PubMedGoogle Scholar
  152. Tomlinson, G.A. and Hochstein, L.I. 1976. Halobacterium saccharovorum sp. nov., a carbohydrate-metabolizing, extremely halophilic bacterium. Canadian Journal of Microbiology 22: 587–591.PubMedGoogle Scholar
  153. Tomlinson, G.A., Koch, T.K., and Hochstein, L.I. 1974. The metabolism of carbohydrates by extremely halophilic bacteria: Glucose metabolism via a modified Ent-ner-Doudoroff pathway. Canadian Journal of Microbiology 20: 1085–1091.Google Scholar
  154. Tomlinson, G.A., Jahnke, L.L., and Hochstein, L.I. 1986. Halobacterium denitrificans sp. nov., an extremely halophilic denitrifying bacterium. International Journal of Systematic Bacteriology 36: 66–70.PubMedGoogle Scholar
  155. Tornabene, T.G. 1978. Non-aerated cultivation of Halobacterium cutirubrum and its effects on cellular squalenes. Journal of Molecular Evolution 11: 253–257.PubMedGoogle Scholar
  156. Torreblanca, M., Rodriguez-Valera, F., Juez, G., Ventosa, A., Kamekura, M., and Kates, M. 1986. Classification of non-haloalkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. Systematic and Applied Microbiology 8: 89–99.Google Scholar
  157. Torsvik, T. and Dundas, I.A. 1974. Bacteriophage of Halobacterium salinarium. Nature (London) 248: 680–681.Google Scholar
  158. Torsvik, T. and Dundas, I.A. 1980. Persisting phage infection in Halobacterium salinarium str. 1. Journal of General Virology 47: 29–36.Google Scholar
  159. Venkataraman, R. and Sreenivasan, A. 1954. Studies on the red halophilic bacteria from salted fish and salt. Proceedings of the Indian Academy of Science 39, Section B: 17–23.Google Scholar
  160. Venkataraman, R. and Sreenivasan, A. 1956. Further studies on the red halophilic bacteria from solar salts and salted fish. Proceedings of the Indian Academy of Science 43: 197–206.Google Scholar
  161. Wagner, G. 1984. Blue light effects in halobacteria, pp. 48–54 in Senger, H. (editor), Blue light Effects in Biological Systems, Springer-Verlag, Berlin.Google Scholar
  162. Wagner, G. and Linhardt, R. 1988. The retinal proteins of halobacteria, p. 85–104 in Rodriguez-Valera, F. (editor), Halophilic Bacteria, Vol. II. CRC Press, Boca Raton.Google Scholar
  163. Wais, A.C. 1985. Cellular morphogenesis in a halophilic archaebacterium. Current Microbiology 12: 191–196.Google Scholar
  164. Wais, A.C. and Daniels, L.L. 1985. Populations of bacteriophage infecting Halobacterium in a transient brine pool. FEMS Microbiology Ecology 31: 323–326.Google Scholar
  165. Wais, A.C., Kon, M., MacDonald, R.E., and Stollar, R.D. 1975. Salt-dependent bacteriophage infecting Halobacterium cutirubrum and Halobacterium halobium. Nature (London) 256: 314–315.Google Scholar
  166. Walsby, A.E. 1980. A square bacterium. Nature (London) 283: 69–71.Google Scholar
  167. Werber, M.M. and Mevarech, M. 1978. Induction of a dissimilatory reduction pathway of nitrate in Halobacterium of the Dead Sea. A possible role for the 2 Fe-ferredoxin isolated from this organism. Archives of Biochemistry and Biophysics 186: 60–65.PubMedGoogle Scholar
  168. Wieland, F. 1988. The cell surfaces of halobacteria, p. 55–65 in Rodriguez-Valera, F. (editor), Halophilic Bacteria, Vol. II. CRC Press, Boca Raton.Google Scholar
  169. Wieland, F., Paul, G., and Sumper, M. 1985. Halobacterial flagellins are sulfated glycoproteins. Journal of Biological Chemistry 260: 15180–15185.PubMedGoogle Scholar
  170. Woese, C. 1987. Bacterial evolution. Microbiological Reviews 51: 221–271.PubMedGoogle Scholar
  171. Yu, I.K., Kawamura, F., and Doi, R.H. 1985. Isolation and characterization of an obligately halophilic methanogenic bacterium. American Society of Microbiology Annual Meeting Abstract I 18: 149.Google Scholar
  172. Zhilina, T.N. 1983. New obligate halophilic methane-producing bacterium. Microbiology (English translation) 52: 290–297.Google Scholar
  173. Zhilina, T.N. 1986. Methanogenic bacteria from hypersaline environments. Systematic and Applied Microbiology 7: 216–222.Google Scholar
  174. Zhilina, T.N. and Kevbrin, V.V. 1985. Cultivation of Methanococcus halophilus on monomethylamine. Mikrobiologiya 54: 93–99.Google Scholar
  175. Zillig, W., Holz, I., Klenk, H.-P., Trent, J., Wunderl, S., Janekovic, D., Imsel, E., and Haas, B. 1987. Pyrococcus woesei, sp. nov., an ultra-thermophilic marine archae-bacterium, representing a novel order, Thermococcales. Systematic and Applied Microbiology 9: 62–70.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Barbara Javor

There are no affiliations available

Personalised recommendations