Skip to main content

Halophilic and Halotolerant Non-phototrophic Eubacteria

  • Chapter
Hypersaline Environments

Part of the book series: Brock/Springer Series in Contemporary Bioscience ((BROCK/SPRINGER))

Abstract

Halophilic, heterotrophic eubacteria share in common their general cell organization, but show many differences in modes of metabolism, salinity tolerances, and ranges of environmental conditions that permit growth. While numerous eubacteria have been isolated from hypersaline environments, relatively little is known about their activities and roles in situ. This gap in knowledge arises from the fact that little is known about the nature and concentrations of the primary organic matter produced in the euphotic zones of hypersaline environments. With the wealth of techniques used to study bacterial processes in freshwater and marine environments, microbiologists should eventually be able to describe more precisely how rapidly and to what extent halophilic eubacteria recycle organic matter in their natural habitats. The following descriptions of the ecology, physiology, and biochemistry of isolated, heterotrophic eubacteria indicate the potential role these bacteria may play in the degradation of organic matter in evaporite environments. The descriptions include the kinds of lipids they produce that might eventually become part of the hydrocarbons remaining in hypersaline sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baas-Becking, L.G.M. and Kaplan, I.R. 1956. The microbiological origin of the sulphur nodules of Lake Eyre. Transactions of the Royal Society of South Australia 79: 52–65.

    CAS  Google Scholar 

  • Benecke, W. 1933. Bacteriology of the sea, pp. 717–854 in Benecke, W., Abderhalden’s Handbuch der biologischen Arbeitsmethoden, vol. 9, Westfalia-Wilhelms University, Munster.

    Google Scholar 

  • Brown, A.D. 1983. Halophilic prokaryotes, pp. 137–162 in Lange, O.L., Nobel, P.S., Osmond, C.B. and Ziegler, H. (editors), Physiological Plant Ecology III, Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Chan, K.-Y. and Leung, O.C. 1979. Nutrition and growth of the moderately halophilic bacteria Micrococcus morrhuae K-17 and Micrococcus luteus K-15. Microbios 25: 71–84.

    PubMed  CAS  Google Scholar 

  • Christian, J.H.B. and Waltho, J.A. 1962. Solute concentrations within cells of halophilic and non-halophilic bacteria. Biochimica et Biophysica Acta 65: 506–508.

    Article  PubMed  CAS  Google Scholar 

  • Collins, M.D., Ross, H.N.M., Tindall, B.J., and Grant, W.D. 1981. Distribution of isoprenoid quinones in halophilic bacteria. Journal of Applied Bacteriology 50: 559–565.

    Article  CAS  Google Scholar 

  • Colwell, R.R., Litchfield, C.D., Vreeland, R.H., Kiefer, L.A., and Gibbons, N.E. 1979. Taxonomic studies of red halophilic bacteria. International Journal of Systematic Bacteriology 29: 379–399.

    Article  Google Scholar 

  • Elazari-Volcani, B. 1940. Studies on the microflora of the Dead Sea. Ph.D. Thesis. Hebrew University of Jerusalem. 119 pp.

    Google Scholar 

  • Forsyth, M.P. and Kushner, D.J. 1970. Nutrition and distribution of salt response in populations of moderately halophilic bacteria. Canadian Journal of Microbiology 16: 253–261.

    Article  PubMed  CAS  Google Scholar 

  • Forsyth, M.P., Schindler, D.B., Gochnauer, M.B., and Kushner, D.J. 1971. Salt tolerance of intertidal marine bacteria. Canadian Journal of Microbiology 17: 825–828.

    Article  PubMed  CAS  Google Scholar 

  • Franzmann, P.D., Burton, H.R., and McMeekin, T.A. 1987. Halomonas subglaciescola, a new species of halotolerant bacteria isolated from Antarctica. International Journal of Systematic Bacteriology 37: 27–34.

    Article  Google Scholar 

  • Galinski, E.A., Pfeiffer, H.-P., and Trüper, H.G. 1985.1, 4, 5, 6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid: a novel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira. European Journal of Biochemistry 149: 135–140.

    Article  PubMed  CAS  Google Scholar 

  • Gibbons, N.E. 1958. The effect of salt on the metabolism of halophilic bacteria, pp. 69–76 in Eddy, B.P. (editor), Proceedings of the 2nd International Symposium on Food Microbiology, H.M. Stationery Office, London.

    Google Scholar 

  • Gochnauer, M.B., Leppard, G.G., Komaratat, P., Kates, M., Novitsky, T., and Kushner, D.J. 1975. Isolation and characterization of Actinopolyspora halophila gen. et sp. nov., an extremely halophilic actinomycete. Canadian Journal of Microbiology 21: 1500–1511.

    Article  PubMed  CAS  Google Scholar 

  • Hamaide, F., Sprott, G.D., and Kushner, D.J. 1984. Energetic basis of development of salt-tolerant transport in a moderately halophilic bacterium, Vibrio costicola. Archives of Microbiology 140: 231–235.

    Article  CAS  Google Scholar 

  • Hamana, K., Kamekura, M., Onishi, H., Akazawa, T., and Matsuzaki, S. 1985. Polyamines in photosynthetic eubacteria and extreme-halophilic archaebacteria. Journal of Biochemistry (Tokyo) 97: 1653–1658.

    CAS  Google Scholar 

  • Hanna, K., Bengis-Garber, C., Kushner, D.J., Kogut, M., and Kates, M. 1984. The effect of salt concentration on the phospholipid and fatty acid conposition of the moderate halophile Vibrio costicola. Canadian Journal of Microbiology 30: 669–675.

    Article  CAS  Google Scholar 

  • Hara, H. 1982. Effect of extreme growth conditions on lipid composition and liposome properties in a moderately halophilic bacterium. Japanese Journal of Bacteriology 37: 851–862.

    Article  PubMed  CAS  Google Scholar 

  • Hara, H. and Masui, M. 1985. Effect of sodium chloride concentration on the synthesis of membrane phospholipid in a halophilic bacterium. FEMS Microbiology Letters 31: 279–282.

    Article  CAS  Google Scholar 

  • Hebert, A.M. and Vreeland, R.H. 1987. Phenotypic comparison of halotolerant bacteria. Halomonas halodurans sp. nov., nom. rev., comb. nov. International Journal of Systematic Bacteriology 37: 347–350.

    Article  Google Scholar 

  • Hegazi, F.Z. 1984. The microbial flora of salted raw milk. Systematic and Applied Microbiology 5: 527–533.

    Google Scholar 

  • Hill, J.H. and White, E.C. 1929. Sodium chloride media for the separation of certain Gram-positive cocci from Gram-negative bacilli. Journal of Bacteriology 18: 43–57.

    PubMed  CAS  Google Scholar 

  • Hipkiss, A.R., Armstrong, D.W., and Kushner, D.J. 1980. Protein turnover in a moderately halophilic bacterium. Canadian Journal of Microbiology 26: 196–203.

    Article  PubMed  CAS  Google Scholar 

  • Hiramatsu, T., Yano, I., and Masui, M. 1980. Effect of NaCl concentration on the protein species and phospholipid composition of the outer membrane in a moderately halophilic bacterium. FEMS Microbiology Letters 7: 289–292.

    Article  CAS  Google Scholar 

  • Hirsch, P. 1980. Distribution and pure culture studies of morphologically distinct Solar Lake microorganisms, pp. 41–60 in Nissenbaum, A. (editor), Hypersaline Brines and Evaporitic Environments, Developments in Sedimentology 28, Elsevier Scientific, New York.

    Chapter  Google Scholar 

  • Hochstein, L.I. and Tomlinson, G.A. 1985. Denitrification by extremely halophilic bacteria. FEMS Microbiology Letters 27: 329–331.

    Article  PubMed  CAS  Google Scholar 

  • Hof, T. 1935. Investigations concerning bacterial life in strong brines. Extrait du Recueil des Travaux Botaniques Néerlandais 32: 92–173.

    Google Scholar 

  • Imhoff, J.F. 1986. Osmoregulation and compatible solutes in eubacteria. FEMS Microbiology Reviews 39: 57–66.

    CAS  Google Scholar 

  • Imhoff, J.F. and Rodriguez-Valera, F. 1984. Betaine is the main compatible solute of halophilic eubacteria. Journal of Bacteriology 160: 478–479.

    PubMed  CAS  Google Scholar 

  • Javor, B.J. 1984. Growth potential of halophilic bacteria isolated from solar salt environments: carbon sources and salt requirements. Applied and Environmental Microbiology 48: 352–360.

    PubMed  CAS  Google Scholar 

  • Johnson, K.G. and Lanthier, P.H. 1986. β-Lactamases from Actinopolyspora halophila, an extremely halophilic actinomycete. Archives of Microbiology 143: 379–386.

    Article  CAS  Google Scholar 

  • Johnson, K.G., Lanthier, P.H., and Gochnauer, M.B. 1986a. Cell walls from Actinopolyspora halophila, an extremely halophilic actinomycete. Archives of Microbiology 143: 365–369.

    Article  CAS  Google Scholar 

  • Johnson, K.G., Lanthier, P.H., and Gochnauer, M.B. 1986b. Studies of two strains of Actinopolyspora halophila, an extremely halophilic actinomycete. Archives of Microbiology 143: 370–378.

    Article  CAS  Google Scholar 

  • Jørgensen, B.B. and Des Marais, D.J. 1986. Competition for sulfide among colorless and purple sulfur bacteria in cyanobacterial mats. FEMS Microbiology Ecology 38: 179–186.

    PubMed  Google Scholar 

  • Kamekura, M. and Onishi, H. 1974. Halophilic nuclease from a moderately halophilic Micrococcus variam. Journal of Bacteriology 119: 339–344.

    PubMed  CAS  Google Scholar 

  • Kamekura, M. and Onishi, H. 1976. Effect of magnesium and some nutrients on the growth and nuclease formation of a moderate halophile, Micrococcus varians var. halophilus. Canadian Journal of Microbiology 22: 1567–1576.

    Article  PubMed  CAS  Google Scholar 

  • Kamekura, M. and Onishi, H. 1978. Flocculation and adsorption of enzymes during growth of a moderate halophile, Micrococcus varians var. halophilus. Canadian Journal of Microbiology 24: 703–709.

    Article  PubMed  CAS  Google Scholar 

  • Kamekura, M., Wallace, R., Hipkiss, A.R., and Kushner, D.J. 1985. Growth of Vibrio costicola and other moderate halophiles in a chemically defined mineral medium. Canadian Journal of Microbiology 31: 870–872.

    Article  PubMed  CAS  Google Scholar 

  • Kamekura, M., Bardocz, S., Anderson, P., Wallace, R., and Kushner, D.J. 1986. Polyamines in moderately and extremely halophilic bacteria. Biochimica et Biophysica Acta 880: 204–208.

    CAS  Google Scholar 

  • Keller, P. and Henis, Y. 1967. The effect of yeast extract and casitone on the response to salt of the microflora of a highly saline soil. Canadian Journal of Microbiology 13: 1427–1432.

    Article  PubMed  CAS  Google Scholar 

  • Klug, M., Boston, P., Francois, R., Gyure, R., Javor, B., Tribble, G., and Vairavamurthy, A. 1985. Sulfur reduction in sediments of marine and evaporite environments, pp. 128–157 in Sagen, D. (editor), The Global Sulfur Cycle, National Aeronautics and Space Administration Technical Memorandum 87570, Washington, D.C.

    Google Scholar 

  • Kogut, M. and Russell, N.J. 1984. The growth and phospholipid composition of a moderately halophilic bacterium (Vibrio costicola) during adaptation to changes in salinity. Current Microbiology 10: 95–98.

    Article  CAS  Google Scholar 

  • Komaratat, P. and Kates, M. 1975. The lipid composition of a halotolerant species of Staphylococcus epidermidis. Biochimica et Biophysica Acta 398: 464–484.

    PubMed  Google Scholar 

  • Krumbein, W.E., Cohen, Y., and Shilo, M. 1977. Solar Lake (Sinai). 4. Stromatolitic cyanobacterial mats. Limnology and Oceanography 22: 635–656.

    Article  CAS  Google Scholar 

  • Kushner, D.J. 1968. Halophilic bacteria. Advances in Applied Microbiology 10: 73–97.

    Article  PubMed  CAS  Google Scholar 

  • Kushner, D.J. 1978. Life in high salt and solute concentrations, pp. 317–368 in Kushner, DJ. (editor), Microbial Life in Extreme Environments, Academic Press, London.

    Google Scholar 

  • Kushner, D.J. and Kamekura, M. 1988. Physiology of halophilic eubacteria, p. 109–138 in Rodriguez-Valera, F. (editor), Halophilic Bacteria, Vol. I. CRC Press, Boca Raton.

    Google Scholar 

  • Kushner, D.J., Hamaide, F., and Macleod, R.A. 1983. Development of salt-resistant active transport in a moderately halophilic bacterium. Journal of Bacteriology 153: 1163–1171.

    PubMed  CAS  Google Scholar 

  • Kushwaha, S.C., Gochnauer, M.B., Kushner, D.J., and Kates, M. 1974. Pigments and isoprenoid compounds in extremely and moderately halophilic bacteria. Canadian Journal of Microbiology 20: 241–245.

    Article  PubMed  CAS  Google Scholar 

  • La Riviere, J.W.M. and Schmidt, K. 1981. Morphologically conspicuous sulfur-oxidizing eubacteria, pp. 1037–1048 in Starr, M.P., Stolp, H., Trüper, H.G., Balows, A. and Schlegel, H.G. (editors), The Prokaryotes. A Handbook on Habitats, Isolation, and Identification of Bacteria, vol. 1, Springer-Verlag, New York.

    Google Scholar 

  • Marquez, M.C., Ventosa, A., and Ruiz-Berraquero, F. 1987. A taxonomic study of heterotrophic halophilic and non-halophilic bacteria in a solar saltern. Journal of General Microbiology 133: 45–56.

    Google Scholar 

  • Masui, M. and Wada, S. 1973. Intracellular concentrations of Na+, K+, and Cl- of a moderately halophilic bacterium. Canadian Journal of Microbiology 19: 1181–1186.

    Article  PubMed  CAS  Google Scholar 

  • Matheson, A.T., Sprott, G.D., McDonald, I.J., and Tessier, H. 1976. Some properties of an unidentified halophile: growth characteristics, internal salt concentration, and morphology. Canadian Journal of Microbiology 22: 780–786.

    Article  PubMed  CAS  Google Scholar 

  • Mathrani, I.M. and Boone, D.R. 1985. Isolation and characterization of a moderately halophilic methanogen from a solar saltern. Applied and Environmental Microbiology 50: 140–143.

    PubMed  CAS  Google Scholar 

  • Mathrani, I.M., Boone, D.R., Man, R.A., Fox, G.E., and Lau, P.P. 1988. Methanohal-ophilus zhilinae sp. nov., an alkaliphilic, halophilic, methlotrophic methanogen. International journal of Systematic Bacteriology 38: 139–142.

    Article  PubMed  CAS  Google Scholar 

  • Measures, J.C. 1975. Role of amino acids in osmoregulation of non-halophilic bacteria. Nature (London) 257: 398–400.

    Article  CAS  Google Scholar 

  • Miller, K.J. 1985. Effects of temperature and sodium chloride concentration on the phospholipid and fatty acid compositions of a halotolerant Planococcus sp. Journal of Bacteriology 162: 263–270.

    PubMed  CAS  Google Scholar 

  • Miller, K.J. and Leschine, S.B. 1984. A halotolerant Planococcus from Antarctic Dry Valley soil. Current Microbiology 11: 205–210.

    Article  CAS  Google Scholar 

  • Morishita, H. and Masui, M. (editors). 1980. Saline Environment. Physiological and Biochemical Adaptation in Halophilic Microorganisms. Japanese Conference on Halophilic Microbiology. Osaka. 200 pp.

    Google Scholar 

  • Noda, F., Hayashi, K., and Mizunuma, T. 1980. Antagonism between osmophilic lactic acid bacteria and yeasts in brine fermentation of soy sauce. Applied and Environmental Microbiology 40: 452–457.

    PubMed  CAS  Google Scholar 

  • Novitsky, T.J. and Kushner, D.J. 1975. Influence of temperature and salt concentration on the growth of a facultatively halophilic “Micrococcus” sp. Canadian Journal of Microbiology 21: 107–110.

    Article  PubMed  CAS  Google Scholar 

  • Novitsky, T.J. and Kushner, D.J. 1976. Planococcus halophilus sp. nov., a facultatively halophilic coccus. International Journal of Systematic Bacteriology 26: 53–57.

    Article  Google Scholar 

  • Ohno, Y., Yano, I., Hiramatsu, T., and Masui, M. 1976. Lipids and fatty acids of a moderately halophilic bacterium, no. 101. Biochimica et Biophysica Acta 424: 337–350.

    PubMed  CAS  Google Scholar 

  • Ohno, Y., Yano, I., and Masui, M. 1979. Effect of NaCl concentration and temperature on the phospholipid and fatty acid composition of a moderately halophilic bacterium, Pseudomonas halosaccharolytica. Journal of Biochemistry (Japan) 85: 413–422.

    CAS  Google Scholar 

  • Onishi, H. 1972. Halophilic amylase from a moderately halophilic Micrococcus. Journal of Bacteriology 109: 570–574.

    PubMed  CAS  Google Scholar 

  • Onishi, H. and Kamekura, M. 1972. Micrococcus halobius sp. n. International Journal of Systematic Bacteriology 22: 233–236.

    Article  Google Scholar 

  • Onishi, H. and Hidaka, O. 1978. Purification and properties of amylase produced by a moderately halophilic Acinetobacter sp. Canadian Journal of Microbiology 24:1017–1023.

    Article  PubMed  CAS  Google Scholar 

  • Onishi, H. and Sonoda, K. 1979. Purification and properties of an extracellular amylase from a moderate halophile, Micrococcus halobius. Applied and Environmental Microbiology 38: 616–620.

    PubMed  CAS  Google Scholar 

  • Onishi, H. and Kamekura, M. 1980. Characterization of salt response, lysis and flocculation of halophilic bacteria, pp. 111–121 in Morishita, H. and Masui, M. (editors), Saline Environment. Physiological and Biochemical Adaptation in Halophilic Microorganisms, Japanese Conference on Halophilic Microbiology, Osaka.

    Google Scholar 

  • Onishi, H., Fuchi, H., Konomi, K., Hidaka, O., and Kamekura, M. 1980. Isolation and distribution of a variety of halophilic bacteria and their classification by salt-response. Agricultural and Biological Chemistry 44: 1253–1258.

    Article  CAS  Google Scholar 

  • Onishi, H., Mori, T., Takeuchi, S., Tani, K., Kobayashi, T., and Kamekura, M. 1983. Halophilic nuclease of a moderately halophilic Bacillus sp.: production, purification and characteristics. Applied and Environmental Microbiology 45: 24–30.

    PubMed  CAS  Google Scholar 

  • Oren, A. 1983. Clostridium lortetii sp. nov., a halophilic obligatory anaerobic bacterium producing endospores with attached vacuoles. Archives of Microbiology 136: 42–48.

    Article  Google Scholar 

  • Oren, A. 1986a. Intracellular salt concentrations of the anaerobic halophilic eubacteria Halo anaer obium praevalens and Halob acteroides halobius. Canadian Journal of Microbiology 32: 4–9.

    Article  CAS  Google Scholar 

  • Oren, A. 1986b. The ecology and taxonomy of anaerobic halophilic eubacteria. FEMS Microbiology Reviews 39: 23–29.

    Article  Google Scholar 

  • Oren, A. 1987. A procedure for the selective enrichment of Halob acteroides halobius and related bacteria from anaerobic hypersaline sediments. FEMS Microbiology Letters 42: 201–204.

    Article  Google Scholar 

  • Oren, A., Paster, B.J., and Woese, C.R. 1984a. Haloanoerobiaceae: a new family of moderately halophilic, obligatory anaerobic bacteria. Systematic and Applied Microbiology 5: 71–80.

    Article  CAS  Google Scholar 

  • Oren, A., Weisburg, W.G., Kessel, M., and Woese, C.R. 1984b. Halob acteroides halobius gen. nov., sp. nov., a moderately halophilic anaerobic bacterium from the bottom sediments of the Dead Sea. Systematic and Applied Microbiology 5: 58–70.

    Article  CAS  Google Scholar 

  • Oren, A., Pohla, H., and Stackebrandt, E. 1987. Transfer of Clostridium lortetii to a new genus Sporohalobacter gen nov. as Sporohalobacter lortetii comb. nov., and description of Sporohalobacter marismortui sp. nov. Systematic and Applied Microbiology 9: 239–246.

    Article  CAS  Google Scholar 

  • Paterek, J.R. and Smith, P.H. 1985. Isolation and characterization of a halophilic methanogen from Great Salt Lake. Applied and Environmental Microbiology 50: 877–881.

    PubMed  CAS  Google Scholar 

  • Paterek, J.R. and Smith, P.H. 1988. Methanohalophilus mahii gen. nov., sp. nov., a methylotrophic halophilic methanogen. International Journal of Systematic Bacteriology 38: 122–123.

    Article  Google Scholar 

  • Peleg, E. and Tietz, A. 1971. Glycolipids of a halotolerant moderately halophilic bacterium. FEBS Letters 15: 309–312.

    Article  PubMed  CAS  Google Scholar 

  • Petter, H.F.M. 1931. On bacteria of salted fish. Koninklijke Akademie van Wetenschappen te Amsterdam. Proceedings, Series B 58: 160–181.

    Google Scholar 

  • Pfiffner, S.M., McInerney, M.J., Jenneman, G.E., and Knapp, R.M. 1986. Isolation of halotolerant, thermotolerant, facultative polymer-producing bacteria and characterization of the exopolymer. Applied and Environmental Microbiology 51: 1224–1229.

    PubMed  CAS  Google Scholar 

  • Potts, M. 1980. Blue-green algae (Cyanophyta) in marine coastal environments of the Sinai Peninsula; distribution, zonation, stratification and taxonomic diversity. Phycologia 19: 60–73.

    Article  Google Scholar 

  • Quesada, E., Ventosa, A., Rodriguez-Valera, F., and Ramos-Cormenzana, A. 1982. Types and properties of some bacteria isolated from hypersaline soils. Journal of Applied Bacteriology 53: 155–162.

    Article  Google Scholar 

  • Quesada, E., Ventosa, A., Rodriguez-Valera, F., Megias, L., and Ramos-Cormenzana, A. 1983. Numerical taxonomy of moderately halophilic Gram-negative bacteria from hypersaline soils. Journal of General Microbiology 129: 2649–2658.

    Google Scholar 

  • Quesada, E., Ventosa, A., Ruiz-Berraquero, F., and Ramos-Cormenzana, A. 1984. Deleya halophila, a new species of moderately halophilic bacteria. International Journal of Systematic Bacteriology 34: 287–292.

    Article  CAS  Google Scholar 

  • Quesada, E., Valderrama, M.J., Bejar, V., Ventosa, A., Ruiz-Berraquero, F., and Ramos-Cormenzana, A. 1987. Numerical taxonomy of moderately halophilic Gram-negative nonmotile eubacteria. Systematic and Applied Microbiology 9: 132–137.

    Google Scholar 

  • Rafaeli-Eshkol, D. 1968. Studies on halotolerance in a moderately halophilic bacterium. Biochemical Journal 109: 679–685.

    PubMed  CAS  Google Scholar 

  • Rafaeli-Eshkol, D. and Avi-Dor, Y. 1968. Studies on halotolerance in a moderately halophilic bacterium. Biochemical Journal 109: 687–691.

    PubMed  CAS  Google Scholar 

  • Robinson, J. 1952. The effects of salts on the nitritase and lactic dehydrogenase activity of Micrococcus halodenitrificans. Canadian Journal of Botany 30: 155–163.

    Article  CAS  Google Scholar 

  • Robinson, J. and Gibbons, N. 1952. The effect of salts on the growth of Micrococcus halodenitrificans n. sp. Canadian Journal of Botany 30: 147–154.

    Article  CAS  Google Scholar 

  • Rodriguez-Valera, F. 1986. The ecology and taxonomy of aerobic chemoorganotrophic halophilic eubacteria. FEMS Microbiology Reviews 39: 17–22.

    Article  Google Scholar 

  • Rodriguez-Valera, F. 1988. Characteristics and microbial ecology of hypersaline environments, p. 3–30 in Rodriguez-Valera, F. (editor), Halophilic Bacteria, Vol. I. CRC Press, Boca Raton.

    Google Scholar 

  • Rodriguez-Valera, F., Ruiz-Berraquero, F., and Ramos-Cormenzana, A. 1981. Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microbial Ecology 7: 235–243.

    Article  Google Scholar 

  • Rodriguez-Valera, F., Ventosa, A., Juez, G., and Imhoff, J.F. 1985. Variation of environmental features and microbial populations with salt concentration in a multi-pond saltern. Microbial Ecology 11: 107–115.

    Article  CAS  Google Scholar 

  • Rosenberg, A. 1983. Pseudomonas halodurans sp. nov., a halotolerant bacterium. Archives of Microbiology 136: 117–123.

    Article  Google Scholar 

  • Rubentschik, L. 1926a. Über die Einwirkung von Salzen auf die Lebenstatigkeit der Urobakterien. Zentralblatt für Bakteriologie II 67: 167–194.

    CAS  Google Scholar 

  • Rubentschik, L. 1926b. Über einige neue Urobakterienarten. Zentralblatt für Bakteriologie II 66: 161–180.

    Google Scholar 

  • Rubentschik, L. 1929. Zur Nitrifikation bei hohen Salzkonzentrationen. Zentralblatt für Bakteriologie II 77: 1–18.

    Google Scholar 

  • Rubentschik, L. 1933. Zur anaeroben Zelluosezersetzung in Salzseen. Zentralblatt für Bakteriologie II 88: 182–186.

    Google Scholar 

  • Rubentschik, L. 1946. Sulfate reducing bacteria. Microbiology (English translation) 15: 443–456.

    Google Scholar 

  • Rubentschik, L.J., Roisen, M.B., Bilansky, F.M., and Shamis, D.L. 1937. Denitrifying bacteria of the Odessa limans and of Odessa Bay. Works of the Odessa State University. Biology 2: 171–207.

    Google Scholar 

  • Russell, N.J., Kogut, M., and Kates, M. 1985. Phospholipid biosynthesis in the moderately halophilic bacterium Vibrio costicola during adaptation to changing salt concentrations. Journal of General Microbiology 131: 781–790.

    CAS  Google Scholar 

  • Sadler, M.I., McAninch, M., Alico, R., and Hochstein, L.I. 1980. The intracellular sodium and potassium composition of the moderately halophilic bacterium, Para-coccus halodenitrificans. Canadian Journal of Microbiology 26: 496–502.

    Article  PubMed  CAS  Google Scholar 

  • Saslawsky, A.S. 1928. Zur Frage der Wirkung hoher Salzkonzentrationen auf die biochemischen Prozesse im Limanschlamm. Zentralblatt für Bakteriologie II 73: 18–28.

    CAS  Google Scholar 

  • Shindler, D.B., Wydro, R.M., and Kushner, D.J. 1977. Cell-bound cations of the moderately halophilic bacterium Vibrio costicola. Journal of Bacteriology 130: 698–703.

    PubMed  CAS  Google Scholar 

  • Shkedy-Vinkler, C. and Avi-Dor, Y. 1975. Betaine-induced stimulation of respiration at high osmolarities in a halotolerant bacterium. Biochemical Journal 150: 219–226.

    PubMed  CAS  Google Scholar 

  • Skyring, G.W., Jones, H.E., and Goodchild, D. 1977. The taxonomy of some new isolates of dissimulatory sulfate-reducing bacteria. Canadian Journal of Microbiology 23: 1415–1425.

    Article  PubMed  CAS  Google Scholar 

  • Starr, M.P. Stolp, H., Trüper, H.G., Balows, A., and Schlegel, H.G. (editors). 1981. The Prokaryotes. A Handbook on Habitats, Isolation, and Identification of Bacteria. Springer-Verlag. New York. 2284 pp.

    Google Scholar 

  • Stern, N. and Tietz, A. 1973. Glycolipids of a halotolerant, moderately halophilic bacterium. I. The effect of growth medium and age of culture on lipid composition. Biochimica et Biophysica Acta 296: 130–135.

    PubMed  CAS  Google Scholar 

  • Takahashi, I. and Gibbons, G.E. 1959. Effect of salt concentration on the morphology and chemical composition of Micrococcus halodenitrificans. Canadian Journal of Microbiology 5: 25–35.

    Article  PubMed  CAS  Google Scholar 

  • Unemoto, T. and Hayashi, M. 1979. Regulation of internal solute concentrations of marine Vibrio alginolyticus in response to external NaCl concentration. Canadian Journal of Microbiology 25: 922–926.

    Article  PubMed  CAS  Google Scholar 

  • Van Qua, D., Simidu, U., and Taga, N. 1981. Purification and some properties of halophilic protease produced by a moderately halophilic marine Pseudomonas sp. Canadian Journal of Microbiology 27: 505–510.

    Article  Google Scholar 

  • Vargues, H. 1962. Contribution à l’étude du caractère halophile chez les bacteries isolées due milieu marin. Bulletin de l’Institution Océanographique 1231, 176 pp.

    Google Scholar 

  • Venkataraman, R. and Sreenivasan, A. 1954. Salt tolerance of marine bacteria. Food Research 19: 311–313.

    CAS  Google Scholar 

  • Ventosa, A. 1988. Taxonomy of moderately halophilic heterotrophic eubacteria, p. 71–84 in Rodriguez-Valera, F. (editor), Halophilic Bacteria, Vol. I. CRC Press, Boca Raton.

    Google Scholar 

  • Ventosa, A., Quesada, E., Rodriguez-Valera, F., Ruiz-Berraquero, F., and Ramos-Cormenzana, A. 1982. Numerical taxonomy of moderately halophilic Gram-negative rods. Journal of General Microbiology 128: 1959–1968.

    Google Scholar 

  • Ventosa, A., Ramos-Cormenzana, A., and Kocur, M. 1983. Moderately halophilic Gram-positive cocci from hypersaline environments. Systematic and Applied Microbiology 4: 564–570.

    Google Scholar 

  • Villar, M., de Ruiz Holgado, A.P., Sanchez, J.J., Trueco, R.E., and Oliver, G. 1985. Isolation and characterization of Pediococcus halophilus from salted anchovies (En-graulis anchoita). Applied and Environmental Microbiology 49: 664–666.

    PubMed  CAS  Google Scholar 

  • Vreeland, R.H. and Martin, E.L. 1980. Growth characteristics, effects of temperature, and ion specificity of the halotolerant bacterium Halomonas elongata. Canadian Journal of Microbiology 26: 746–752.

    Article  CAS  Google Scholar 

  • Vreeland, R.H., Litchfield, C.D., Martin, E.L., and Elliot, E. 1980. Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. International Journal of Systematic Bacteriology 30: 485–495.

    Article  CAS  Google Scholar 

  • Vreeland, R.H., Mierau, B.D., Litchfield, C.D., and Martin, E. 1983. Relationship of the internal solute composition to the salt tolerance of Halomonas elongata. Canadian Journal of Microbiology 29: 407–414.

    Article  CAS  Google Scholar 

  • Vreeland, R.H., Anderson, R., and Murray, R.G.E. 1984. Cell wall and phospholipid composition and their contribution to the salt tolerance of Halomonas elongata. Journal of Bacteriology 160: 879–883.

    PubMed  CAS  Google Scholar 

  • Ward, D.M. and Brock, T.D. 1978. Hydrocarbon biodegradation in hypersaline environments. Applied and Environmental Microbiology 35: 353–359.

    PubMed  CAS  Google Scholar 

  • Weisser, J. and Trüper, H. 1985. Osmoregulation in a new haloalkaliphilic Bacillus from the Wadi Natrun (Egypt). Systematic and Applied Microbiology 6: 7–11.

    CAS  Google Scholar 

  • Zeikus, J.F., Hegge, P.W., Thompson, T.E., Phelps, T.J., and Langworthy, T.A. 1983. Isolation and description of Halo anaerobium praevalens gen. nov. and sp. nov., an obligately anaerobic halophile common to Great Salt Lake sediments. Current Microbiology 9: 225–234.

    Article  CAS  Google Scholar 

  • Zhilina, T.N. 1986. Methanogenic bacteria from hypersaline environments. Systematic and Applied Microbiology 7: 216–222.

    Article  CAS  Google Scholar 

  • ZoBell, C.E. 1958. Ecology of sulfate reducing bacteria. Producers’ Monthly 22: 12–29.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Javor, B. (1989). Halophilic and Halotolerant Non-phototrophic Eubacteria. In: Hypersaline Environments. Brock/Springer Series in Contemporary Bioscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74370-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74370-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74372-6

  • Online ISBN: 978-3-642-74370-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics