Skip to main content

The Effects of Dissolved Organic Carbon on Evaporite Minerals

  • Chapter
Hypersaline Environments

Part of the book series: Brock/Springer Series in Contemporary Bioscience ((BROCK/SPRINGER))

  • 354 Accesses

Abstract

Because evaporites are salts precipitated from electrolyte solutions, it logically follows that the physical chemistry of natural brines should be similar to that of pure solutions of mixed electrolytes prepared in the laboratory. However, such laboratory models do not acknowledge the contribution of organisms to brine chemistry, and thus they ignore the potential role of dissolved organic matter (DOC) as natural chelators or as competitive, inhibitory, or catalytic substances. The role DOC plays in calcium carbonate and gypsum precipitation is much better known than its role in the formation of more economically important halite and potash minerals. This gap in knowledge will remain until more is known about the types and concentrations of DOC in natural brines saturated with respect to these minerals. The following discussion outlines the known or presumed role of DOC in modifying the nature of several evaporite minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baha Al-Deen, B. and Baha Al-Deen, A.H. 1972. Posible efecto de microalgas en la forma de cristalización de cloruro de sodio en la Salina de Araya. Boletin del Instituto Oceanografico Universidad de Oriente 11: 35–38.

    CAS  Google Scholar 

  • Baker, P.A. and Kastner, M. 1981. Constraints on the formation of sedimentary dolomite. Science 213: 214–216.

    Article  PubMed  CAS  Google Scholar 

  • Barcelona, M.J. and Atwood, D.K. 1978. Gypsum-organic interactions in natural sea-water: effect of organics on precipitation kinetics and crystal morphology. Marine Chemistry 6: 99–115.

    Article  CAS  Google Scholar 

  • Barcelona, M.J. and Atwood, D.K. 1979. Gypsum-organic interactions in the marine environment: sorption of fatty acids and hydrocarbons. Geochimica et Cosmochimica Acta 43: 47–53.

    Article  CAS  Google Scholar 

  • Ben-Yaakov, S. and Kaplan, I.R. 1969. Determination of carbonate saturation of sea-water with a carbonate saturometer. Limnology and Oceanography 14: 874–882.

    Article  CAS  Google Scholar 

  • Berner, R.A. 1975. The role of magnesium in the crystal growth of calcite and aragonite from sea water. Geochimica et Cosmochimica Acta 39: 489–504.

    Article  CAS  Google Scholar 

  • Borchert, H. and Muir, R.O. 1964. Salt Deposits. The Origin, Metamorphism and Deformation of Evaporites. D. Van Nostrand Co., New York, 338 p.

    Google Scholar 

  • Braitsch, O. 1971. Salt Deposits. Their Origin and Composition. Springer-Verlag, Berlin, 297 p.

    Google Scholar 

  • Chave, K. 1965. Carbonates: association with organic matter in surface seawater. Science 148: 1723–1724.

    Article  PubMed  CAS  Google Scholar 

  • Chave, K. and Suess, E. 1967. Suspended minerals in seawater. Transactions of the New York Academy of Science, ser. 2, vol. 29: 991–1000.

    CAS  Google Scholar 

  • Chave, K. and Suess, E. 1970. Calcium carbonate saturation in seawater: effects of dissolved organic matter. Limnology and Oceanography 15: 633–637.

    Article  CAS  Google Scholar 

  • Cody, R.D. 1979. Lenticular gypsum: occurrences in nature, and experimental determinations of effects of soluble green plant material on its formation. Journal of Sedimentary Petrology 49: 1015–1028.

    CAS  Google Scholar 

  • Davies, P.J., Ferguson, J. and Bubela, B. 1975. Dolomite and organic material. Nature (London) 255: 472–474.

    Article  CAS  Google Scholar 

  • Garrels, R.M. and Thompson, M.E. 1962. A chemical model for sea water at 25°C and one atmosphere total pressure. American Journal of Science 260: 57–66.

    Article  CAS  Google Scholar 

  • Gebelein, C.D. and Hoffman, P. 1973. Algal origin of dolomitic laminations in stromatolitic limestone. Journal of Sedimentary Petrology 43: 603–613.

    Google Scholar 

  • Giesel, W. 1972. Outbursts of carbon dioxide in potash mines—fundamentals and possibilities of forecast, p. 235–239 in Richter-Bernburg, G. (editor), Geology of Saline Deposits. Unesco, Paris.

    Google Scholar 

  • Gunatilaka, A., Saleh, A., Al-Temeemi, A. and Nassar, N. 1984. Occurrence of subtidal dolomite in a hypersaline lagoon, Kuwait. Nature (London) 311: 450–452.

    Article  CAS  Google Scholar 

  • Gunatilaka, A., Al-Zamel, A., Shearman, D. and Reda, A. 1987. A spherulitic fabric in selectively dolomitized siliciclastic crustacean burrows, northern Kuwait. Journal of Sedimentary Petrology 57: 922–927.

    Google Scholar 

  • Hardie, LA 1987. Perspectives. Dolomitization: a critical view of some current views. Journal of Sedimentary Petrology 57: 166–183.

    CAS  Google Scholar 

  • Javor, B.J. 1979. Ecology, Physiology, and Carbonate Chemistry of Blue-Green Algal Mats, Laguna Guerrero Negro, Mexico. Ph.D. Thesis. University of Oregon, Eugene. 260 pp.

    Google Scholar 

  • Javor, B.J. 1983. Nutrients and ecology of the Western Salt and Exportadora de Sal saltern brines, pp. 195–205 in Schreiber, B.C. and Harner, H.L. (editors), Sixth International Symposium on Salt, vol. 1, The Salt Institute, Toronto.

    Google Scholar 

  • Kastner, M. 1984. Control of dolomite formation. Nature (London) 311: 410–411.

    Article  Google Scholar 

  • Kitano, Y. et al. 1969. Effects of organic matter on solubilities and crystal form of carbonates. American Zoologist 9: 681–688.

    Google Scholar 

  • Lazar, B., Starinsky, A., Katz, A., Sass, E. and Ben-Yaakov, S. 1983. The carbonate system in hypersaline solutions: alkalinity and CaCO3 solubility of evaporated seawater. Limnology and Oceanography 28: 978–986.

    Article  CAS  Google Scholar 

  • Meyers, P.A. and Quinn, J.G. 1971. Interaction between fatty acids and calcite in seawater. Limnology and Oceanography 16: 992–997.

    Article  CAS  Google Scholar 

  • Milone, M. and Ferrero, F. 1947. The relations between surface tension and crystalline habit. II. Gazzetta Chimica Italiana 77: 348–352.

    CAS  Google Scholar 

  • Mitterer, R.M. 1968. Amino acid composition of organic matrix in calcareous oolites. Science 162: 1498–1499.

    Article  PubMed  CAS  Google Scholar 

  • Mitterer, R.M. 1972. Biogeochemistry of aragonite mud and oolites. Geochimica et Cosmochimica Acta 36: 1407–1422.

    Article  CAS  Google Scholar 

  • Noyes, R. 1966. Potash and Potassium Fertilizers. Noyes Development Corporation. Park Ridge. 210 pp.

    Google Scholar 

  • Otsuki, A. and Wetzel, R.G. 1973. Interaction of yellow organic acids with CaCO3 in freshwater. Limnology and Oceanography 18: 490–493.

    Article  CAS  Google Scholar 

  • Ploss, R.S. 1964. Sodium chloride: modification of crystal habit by chemical agents. Science 144: 169–170.

    Article  PubMed  CAS  Google Scholar 

  • Pytkowicz, R.M. 1971. Sand-seawater interactions in Bermuda beaches. Geochimica et Cosmochimica Acta 35: 509–515.

    Article  CAS  Google Scholar 

  • Pytkowicz, R.M. 1975. Some trends in marine chemistry and geochemistry. Earth-Science Reviews 11: 1–46.

    Article  CAS  Google Scholar 

  • Shuman, A.C. 1965. Gross imperfections and habit modification in salt crystals, pp. 246–253 in Rau, J.L. (editor), Second Symposium on Salt, vol. 2, Northern Ohio Geological Society, Cleveland.

    Google Scholar 

  • Sonnenfeld, P. 1984. Brines and Evaporites. Academic Press. New York. 613 pp.

    Google Scholar 

  • Suess, E. 1970. Interaction of organic compounds with CaCO3. I. Association phenomena and geochemical implications. Geochimica et Cosmochimica Acta 34: 157–168.

    Article  CAS  Google Scholar 

  • Suess, E. and Fütterer, D. 1972. Aragonitic ooids: experimental precipitation from seawater in the presence of humic acid. Sedimentology 19: 129–139.

    Article  CAS  Google Scholar 

  • Van Rosmalen, G.M., Marchée, W.G.J. and Bennema, P. 1976. A comparison of gypsum crystals grown in silica gel and agar in the presence of additives. Journal of Crystal Growth 35: 169–176.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Javor, B. (1989). The Effects of Dissolved Organic Carbon on Evaporite Minerals. In: Hypersaline Environments. Brock/Springer Series in Contemporary Bioscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74370-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74370-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74372-6

  • Online ISBN: 978-3-642-74370-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics