Skip to main content

Part of the book series: Brock/Springer Series in Contemporary Bioscience ((BROCK/SPRINGER))

Abstract

Two themes of this volume are 1) the comparative biology of different hypersaline systems and 2) the diversity of microorganisms in the various hypersaline habitats, topics that cannot be adequately addressed in a single chapter. From the tabulation of the different organisms known to inhabit various hypersaline environments, it is clear that macroscopic diversity is lacking but that microscopic and metabolic diversity are not. Comparisons of community metabolism or potential metabolic activity in different hypersaline habitats or in waters of different salinities in a single habitat do not necessarily indicate that productivity and decomposition processes decrease as salinity increases. Brines much more concentrated than seawater are often highly productive. The following discussion and tables outline the taxonomy, salinity tolerances, and biological activities of organisms from a variety of hypersaline environments. The summary presented here should serve as a starting point for the more detailed analyses of how halophilic microorganisms cope with and modify their environments, and how their activities can be recognized in evaporite sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, G.C. 1958. Some limnological features of a shallow saline meromictic lake. Limnology and Oceanography 3: 259–270.

    Article  Google Scholar 

  • Baas-Becking, L.G.M. 1931. Salt effects on swarmers of Dunaliella viridis Teod. Journal of General Physiology 14: 765–779.

    Article  PubMed  CAS  Google Scholar 

  • Baas-Becking, L.G.M. and Kaplan, I.R. 1956. The microbiological origin of the sulphur nodules of Lake Eyre. Transactions of the Royal Society of South Australia 79: 52–65.

    CAS  Google Scholar 

  • Bauld, J. 1981. Occurrence of microbial mats in saline lakes. Hydrobiologia 81: 87–111.

    Article  Google Scholar 

  • Bayly, I.A.E. 1972. Salinity tolerance and osmotic behavior of animals in athalassic saline and marine hypersaline waters. Annual Review of Ecology and Systematics 3: 233–268.

    Article  Google Scholar 

  • Bayly, I.A.E. and Williams, W.D. 1966. Chemical and biological studies of some saline lakes of south-east Australia. Australian Journal of Marine and Freshwater Research 17: 177–228.

    Article  CAS  Google Scholar 

  • Ben-Amotz, A. and Avron, M. 1983. Accumulation of metabolites by halotolerant algae and its industrial potential. Annual Review of Microbiology 37: 95–119.

    Article  PubMed  CAS  Google Scholar 

  • Benoit, R.E. and Hall, Jr., C.L. 1970. The microbiology of some Dry Valley soils of Victoria Land, pp. 697–701 in Holdgate, M.W. (editor), Antarctic Ecology, vol. 2, Academic Press, New York.

    Google Scholar 

  • Bien, E. and Schwartz, W. 1965. Geomikrobiologische Untersuchungen. VI. Ãœber das Vorkommen konservierter toter und lebender Bakterienzellen in Salzgesteinen. Zeitschrift für Allgemeine Mikrobiologie 5: 185–205.

    Article  PubMed  CAS  Google Scholar 

  • Blinn, D.W. 1971. Autecology of a filamentous alga, Ctenocladus circinnatus (Chlorophyceae), in saline environments. Canadian Journal of Botany 49: 735–743.

    Article  CAS  Google Scholar 

  • Borowitzka, L. 1981. The microflora: adaptations to life in extremely saline lakes. Hydrobiologia 81: 33–46.

    Article  Google Scholar 

  • Borowitzka, M.A. and Borowitzka, L.J. 1988. Dunaliella, p. 27–58 in Borowitzka, M.A., and Borowitzka, L.J. (editors), Micro-algal Biotechnology, Cambridge University Press, Cambridge.

    Google Scholar 

  • Brock, T.D. 1975. Salinity and the ecology of Dunaliella from Great Salt Lake. Journal of General Microbiology 89: 285–292.

    Google Scholar 

  • Brock, T.D. 1976. Halophilic blue-green algae. Archives of Microbiology 107: 109–111.

    Article  PubMed  CAS  Google Scholar 

  • Brock, T.D. 1979. Ecology of saline lakes, pp. 29–47 in Shilo, M. (editor), Strategies of Microbial Life in Extreme Environments, Dahlem Konferenzen, Berlin.

    Google Scholar 

  • Brown, A.D. 1976. Compatible solutes and extreme water stress in eukaryotic microorganisms. Advances in Microbial Physiology 17: 181–242.

    Article  Google Scholar 

  • Brown, A.D. 1983. Halophilic prokaryotes, pp. 137–162 in Lange, O.L., Nobel, P.S., Osmond, C.B., and Ziegler, H. (editors), Physiological Plant Ecology III, Springer-Verlag, New York.

    Google Scholar 

  • Brown, A.D. and Borowitzka, L.J. 1979. Halotolerance of Dunaliella, pp. 139–190 in Levandowsky, M. and Hutner, S.H. (editor), Biochemistry and Physiology of Protozoa, vol. 1, Academic Press, New York.

    Google Scholar 

  • Cameron, R.E., Morelli, F.A. and Randall, L.P. 1972. Aerial, aquatic and soil microbiology of Don Juan Pond, Antarctica. Antarctic Journal of the United States 7: 254–258.

    Google Scholar 

  • Campbell, P.J. 1978. Primary productivity of a hypersaline Antarctic lake. Australian Journal of Marine and Freshwater Research 29: 717–724.

    Article  CAS  Google Scholar 

  • Carpelan, L.H. 1967. Invertebrates in relation to hypersaline habitats. Texas University Contributions to Marine Science 12: 219–229.

    Google Scholar 

  • Cloern, J.E., Cole, B.E. and Oremland, R.S. 1983a. Autotrophic processes in meromictic Big Soda Lake, Nevada. Limnology and Oceanography 28: 1049–1061.

    Article  CAS  Google Scholar 

  • Cloern, J.E., Cole, B.E. and Oremland, R.S. 1983b. Seasonal changes in the chemistry and biology of a meromictic lake (Big Soda Lake, Nevada, U.S.A.). Hydrobiologia 105: 195–206.

    Article  CAS  Google Scholar 

  • Cohen, S., Oren, A. and Shilo, M. 1983. The divalent cation requirement of Dead Sea halobacteria. Archives of Microbiology 136: 184–190.

    Article  CAS  Google Scholar 

  • Cohen, Y., Krumbein, W.E., Goldberg, M. and Shilo, M. 1977a. Solar Lake (Sinai). 1. Physical and chemical limnology. Limnology and Oceanography 22: 597–608.

    Article  CAS  Google Scholar 

  • Cohen, Y., Krumbein, W.E. and Shilo, M. 1977b. Solar Lake (Sinai). 2. Distribution of photosynthetic microorganisms and primary production. Limnology and Oceanography 22: 609–620.

    Article  CAS  Google Scholar 

  • Cohen, Y., Krumbein, W.E. and Shilo, M. 1977c. Solar Lake (Sinai). 3. Bacterial distribution and production. Limnology and Oceanography 22: 621–634.

    Article  CAS  Google Scholar 

  • Cole, G.A. and Brown, R.J. 1967. The chemistry of Artemia habitats. Ecology 48: 858–861.

    Article  Google Scholar 

  • Cole, G.A., Whiteside, M.C. and Brown, R.J. 1967. Unusual monomixis in two saline Arizona ponds. Limnology and Oceanography 12: 584–591.

    Article  Google Scholar 

  • Copeland, B.J. 1967. Environmental characteristics of hypersaline lagoons. Texas University Contributions to Marine Science 12: 207–218.

    Google Scholar 

  • Cronin, E.A. and Post, F.J. 1977. Report of a dematiaceous hyphomycete from the Great Salt Lake, Utah. Mycologia 69: 846–847.

    Article  PubMed  CAS  Google Scholar 

  • Davis, J.S. 1978. Biological communities of a nutrient enriched salina. Aquatic Botany 4: 23–42.

    Article  Google Scholar 

  • De Rosa, M., Gambacorta, A., Nicolaus, B. and Grant, W.D. 1983. A C25/C25 diether core lipid from archaebacterial haloalkalophiles. Journal of General Microbiology 129: 2333–2337.

    Google Scholar 

  • Dombrowski, H.F. 1961. Bacillus circulans aus Zechsteinsalzen. Zentralblatt für Bakteriologie, Mikrobiologie, und Hygiene Abt. 1 Originale 183: 173–179.

    Google Scholar 

  • Dombrowski, J.G. 1966. Geological problems in the question of living bacteria in Paleozoic salt deposits, pp. 215–220 in Rau, J. (editor), Second Symposium on Salt, vol. 1, Northern Ohio Geological Society, Cleveland.

    Google Scholar 

  • Drews, G. 1981. Rhodospirillum salexigens, spec. nov., an obligately halophilic phototrophic bacterium. Archives of Microbiology 130: 325–327.

    Article  CAS  Google Scholar 

  • Dundas, I. 1978. The normal Halobacteriaceae, the general physiology and taxonomy of a well adapted and highly successful group of microorganisms, pp. 641–651 in Caplan, S.R. and Ginzburg, M. (editors), Energetics and Structure of Halophilic Microorganisms, Elsevier-North-Holland Biomedical Press, New York.

    Google Scholar 

  • Edgerton, M.E. and Brimblecombe, P. 1981. Thermodynamics of halobacterial environments. Canadian Journal of Microbiology 27: 899–909.

    Article  PubMed  CAS  Google Scholar 

  • Elazari-Volcani, B. 1940. Studies on the microflora of the Dead Sea. Ph.D. Thesis, Hebrew University of Jerusalem, 119 pp.

    Google Scholar 

  • Elazari-Volcani, B. 1943a. A dimastigamoeba in the bed of the Dead Sea. Nature (London) 152: 275–277.

    Google Scholar 

  • Elazari-Volcani, B. 1943b. Bacteria in the bottom of the Dead Sea. Nature (London) 152: 274–275.

    Article  Google Scholar 

  • Ehrlich, A. and Dor, I. 1985. Photosynthetic microorganisms of the Gavish Sabkha, pp. 296–321, in Friedman, G.M. and Krumbein, W.E. (editors), Hypersaline Ecosystems. The Gavish Sabkha, Ecological Studies 53, Springer-Verlag, New York.

    Google Scholar 

  • Eugster, H.P. 1980. Lake Magadi, Kenya, and its precursors, pp. 195–232 in Nissenbaum, A. (editor), Hypersaline Brines and Evaporitic Environments, Developments in Sedimentology 28, Elsevier Scientific, New York.

    Chapter  Google Scholar 

  • Felix, E.A. and Rushforth, S.R. 1979. The algal flora of the Great Salt Lake, Utah, U.S.A. Nova Hedwigia 31: 163–194.

    Google Scholar 

  • Friedman, G.M. 1982. Evaporites as source rock for petroleum, pp. 385–395 in Hand-ford, C.R., Loucks, R.G. and Davies, G.R. (editors), Depositional and Diagenetic Spectra of Evaporites—a Core Workshop, Society of Economic Paleontologists and Mineralogists, no. 3, Calgary.

    Google Scholar 

  • Geddes, M.C. 1976. Seasonal fauna of some ephemeral saline waters in western Victoria with particular reference to Parartemia zietziana Sayce (Crustacea: Anostraca). Australian journal of Marine and Freshwater Research 27: 1–22.

    Article  Google Scholar 

  • Geddes, M.C. 1981. The brine shrimps Artemia and Parartemia. Hydrobiologia 81: 169–179.

    Article  Google Scholar 

  • Gerdes, G., Krumbein, W.E. and Holtkamp, E. 1985a. Salinity and water activity related zonation of microbial communities and potential stromatolites of the Gavish Sabkha, pp. 238–266 in Friedman, G.M. and Krumbein, W.E. (editors), Hypersaline Ecosystems. The Gavish Sabkha, Ecological Studies 53, Springer-Verlag, New York.

    Google Scholar 

  • Gerdes, G., Spira, J. and Dimentan, C. 1985b. The fauna of the Gavish Sabkha and the Solar Lake—a comparative study, pp. 322–345 in Friedman, G.M. and Krumbein, W.E. (editor), Hypersaline Ecosystems. The Gavish Sabkha, Ecological Studies 53, Springer-Verlag, New York.

    Google Scholar 

  • Giani, E., Giani, L., Cohen, Y. and Krumbein, W.E. 1984. Methanogenesis in the hypersaline Solar Lake (Sinai). FEMS Microbiology letters 25: 219–224.

    Article  CAS  Google Scholar 

  • Golubic, S. 1980. Halophily and halotolerance in cyanophytes. Origins of Life 10: 169–183.

    Article  CAS  Google Scholar 

  • Hammer, U.T. 1981. A comparative study of primary production and related factors in four saline lakes in Victoria, Australia. Internationale Revue der gesamten Hydrobiologie 66: 701–743.

    Article  CAS  Google Scholar 

  • Hammer, U.T., Shamess, J. and Haynes, R.C. 1983. The distribution and abundance of algae in saline lakes of Saskatchewan, Canada. Hydrobiologia 105: 1–26.

    Article  Google Scholar 

  • Hand, R.M. 1980. Bacterial populations in two saline Antarctic lakes, pp. 123–129 in Trudinger, P.A. and Walter, M.R. (editors), Biogeochemistry of Ancient and Modern Environments, Springer-Verlag, New York.

    Google Scholar 

  • Haynes, R.C. and Hammer, U.T. 1978. The saline lakes of Saskatchewan IV. Primary production by phytoplankton in selected saline ecosystems. Internationale Revue der gesamten Hydrobiologie 63: 337–351.

    Article  Google Scholar 

  • Hill, J.H. and White, E.C. 1929. Sodium chloride media for the separation of certain Gram-positive cocci from Gram-negative bacilli. Journal of Bacteriology 18: 43–57.

    PubMed  CAS  Google Scholar 

  • Hirsch, P. 1980. Distribution and pure culture of morphologically distinct Solar Lake microorganisms, pp. 41–60 in Nissenbaum, A. (editor), Hypersaline Brines and Evaporitic Environments, Developments in Sedimentology 28, Elsevier Scientific, New York.

    Chapter  Google Scholar 

  • Hochstein, L.I. 1988. The physiology and metabolism of the extremely halophilic bacteria, p. 67–83 in Rodriguez-Valera, F. (editor), Halophilic Bacteria, Vol. II, CRC Press, Boca Raton.

    Google Scholar 

  • Hof, T. 1935. Investigations concerning bacterial life in strong brines. Extrait du Recueil des Travaux Botaniques Nérlandais 32: 92–173.

    Google Scholar 

  • Holser, W.T. 1963. Chemistry of brine inclusions in Permian salt from Hutchinson, Kansas, pp. 86–95 in Bersticker, A.C., Hoekstra, K.E. and Hall, J.F. (editors), Symposium on Salt, Northern Ohio Geological Society, Cleveland.

    Google Scholar 

  • Horowitz, N.H., Cameron, R.E. and Hubbard, J.S. 1972. Microbiology of the Dry Valleys of Antarctica. Science 176: 242–245.

    Article  PubMed  CAS  Google Scholar 

  • Imhoff, J.F. 1986. Osmoregulation and compatible solutes in eubacteria. FEMS Microbiology Reviews 39: 57–66.

    CAS  Google Scholar 

  • Imhoff, J.F. 1988. Halophilic phototrophic bacteria, p. 85–108 in Rodriguez-Valera, F. (editor), Halophilic Bacteria, Vol. II, CRC Press, Boca Raton.

    Google Scholar 

  • Imhoff, J.F. and Trüper, H.G. 1977. Ectothiorhodospira halochloris sp. nov., a new extremely halophilic phototrophic bacterium containing bacteriochlorophyll b. Archives of Microbiology 114: 115–121.

    Article  CAS  Google Scholar 

  • Imhoff, J.F., Hashwa, F. and Trüper, H.G. 1978. Isolation of extremely halophilic phototrophic bacteria from the alkaline Wadi Natrun, Egypt. Archiv für Hydrobiologie 84: 381–388.

    Google Scholar 

  • Imhoff, J.F., Sahl, H.G., Soliman, G.S.H. and Trüper, H.G. 1979. The Wadi Natrun: chemical composition and microbial mass developments in alkaline brines and eutrophic desert lakes. Geomicrobiology Journal 1: 219–234.

    Article  CAS  Google Scholar 

  • Imhoff, J.F., Tindall, B.J., Grant, W.D. and Trüper, H.G. 1981. Ectothiorhodospira vacuolata sp. nov., a new phototrophic bacterium from soda lakes. Archives of Microbiology 130: 238–242.

    Article  CAS  Google Scholar 

  • Jaschof, H. and W. Schwartz. 1961. Untersuchungen über Lebensgemeinschaften halophiler Mikroorganismen II. Ãœber die Mikroben assoziationen einer alkalischen Sole aus dem Hochtal von Mexiko. Zeitschrift für Allgemeine Mikrobiologie 1: 258–273.

    Article  Google Scholar 

  • Javor, B.J. 1983. Planktonic standing crop and nutrients in a saltern ecosystem. Limnology and Oceanography 28: 153–159.

    Article  CAS  Google Scholar 

  • Jones, B.F., Eugster, H.P. and Rettig, S.L. 1977. Hydrochemistry of the Lake Magadi basin, Kenya. Geochimica et Cosmochimica Acta 41: 53–72.

    Article  CAS  Google Scholar 

  • Jørgensen, B.B. and Cohen, Y. 1977. Solar Lake (Sinai). 5. The sulfur cycle of the benthic cyanobacterial mats. Limnology and Oceanography 22: 657–666.

    Article  Google Scholar 

  • Jørgensen, B.B., Revsbech, N.P. and Cohen, Y. 1983. Photosynthesis and structure of benthic microbial mats: microelectrode and SEM studies of four cyanobacterial communities. Limnology and Oceanography 28: 1075–1093.

    Article  Google Scholar 

  • Kaplan, I.R. and Friedman, A. 1970. Biological productivity in the Dead Sea. Part 1: Microorganisms in the water column. Israel Journal of Chemistry 8: 513–528.

    CAS  Google Scholar 

  • Kerry, K.R., Grace, D.R., Williams, R. and Burton, H.R. 1977. Studies on some saline lakes of the Vestfold Hills, Antarctica, pp. 839–858 in Llano, G.A. (editor), Adaptations Within Antarctic Ecosystems, Smithsonian Institution, Washington, D.C.

    Google Scholar 

  • Klug, M., Boston, P., Francois, R., Gyure, R., Javor, B., Tribble, G. and Vairavamurthy, A. 1985. Sulfur reduction in sediments of marine and evaporite environments, pp. 128–157 in Sagen, D. (editor), The Global Sulfur Cycle, National Aeronautics and Space Administration Technical Memorandum 87570, Washington, D.C.

    Google Scholar 

  • Knauth, L.P. and Beeunas, M.A. 1986. Isotope geochemistry of fluid inclusions in Permian halite with implications for the isotopic history of ocean water and the origin of saline formation waters. Geochimica et Cosmochimica Acta 50: 419–433.

    Article  CAS  Google Scholar 

  • Krumbein, W.E., Cohen, Y. and Shilo, M. 1977. Solar Lake (Sinai). 4. Stromatolitic cyanobacterial mats. Limnology and Oceanography 22: 635–656.

    Article  CAS  Google Scholar 

  • Kushner, D.J. 1978. Life in high salt and solute concentrations, pp. 317– 368 in Kushner, D.J. (editor), Microbial Life in Extreme Environments. Academic Press, London.

    Google Scholar 

  • Kushner, D.J. 1985. The Halobacteriaceae, pp. 171–214 in Woese, C.R. and Wolfe, R.S. (editors), The Bacteria. A Treatise on Structure and Function, Vol. VIII, Archaebacteria, Academic Press, New York.

    Google Scholar 

  • Kushner, D.J. and Kamekura, M. 1988. Physiology of halophilic eubacteria, p. 109–138 in Rodriguez-Valera, F. (editor), Halophilic Bacteria, Vol. I, CRC Press, Boca Raton.

    Google Scholar 

  • Larsen, H. 1980. Ecology of hypersaline environments, pp. 23–39 in Nissenbaum, A. (editor), Hypersaline Brines and Evaporitic Environments, Developments in Sedi-mentology 28, Elsevier Scientific, New York.

    Chapter  Google Scholar 

  • Larsen, H. 1981. The family Halobacteriaceae, pp. 985–994 in Starr, M.P., Stolp, H., Trüper, H.G., Balows, A. and Schlegel, H.G. (editors), The Prokaryotes. A Handbook on Habitats, Isolation, and Identification of Bacteria, Springer-Verlag, New York.

    Google Scholar 

  • Mason, D.T. 1967. Limnology of Mono Lake. University of California Publications in Zoology 83: 1–102.

    Google Scholar 

  • Mathrani, I.M. and Boone, D.R. 1985. Isolation and characterization of a moderately halophilic methanogen from a solar saltern. Applied and Environmental Microbiology 50: 140–143.

    PubMed  CAS  Google Scholar 

  • Melack, J.M. 1983. Large, deep salt lakes: a comparative limnological analysis. Hydrobiologia 105: 223–230.

    Article  Google Scholar 

  • Mitchell, B.D. and Geddes, M.C. 1977. Distribution of the brine shrimps Parartemia zietziana Sayce and Artemia salina (L.) along a salinity and oxygen gradient in a South Australian salt field. Freshwater Biology 7: 461–467.

    Article  CAS  Google Scholar 

  • Morishita, H. and Masui, M. (editors). 1980. Saline Environment. Physiological and Biochemical Adaptation in Halophilic Microorganisms. Japanese Conference on Halophilic Microbiology. Osaka. 200 pp.

    Google Scholar 

  • Munns, R., Greenway, H. and Kirst, G.O. 1983. Halotolerant eukaryotes, pp. 59–135 in Lange, O.L., Nobel, P.S., Osmond, C.S. and Ziegler, H. (editors), Physiological Plant Ecology III, Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Nissen, H. and Dundas, I.D. 1984. Rhodospirillum salinarium sp. nov., a halophilic photosynthetic bacterium isolated from a Portuguese saltern. Archives of Microbiology 138: 251–256.

    Article  CAS  Google Scholar 

  • Nissenbaum, A. 1975. The microbiology and biogeochemistry of the Dead Sea. Microbial Ecology 2: 139–161.

    Article  CAS  Google Scholar 

  • Norton, C.F. and Grant, W.D. 1988. Survival of halobacteria within fluid inclusions in salt crystals. Journal of General Microbiology 134: 1365–1373.

    Google Scholar 

  • Oremland, R.S., Marsh, L. and Des Marais, D.J. 1982. Methanogenesis in Big Soda Lake, Nevada: an alkaline, moderately hypersaline desert lake. Applied and Environmental Microbiology 43: 462–468.

    PubMed  CAS  Google Scholar 

  • Oren, A. 1981. Approaches to the microbial ecology of the Dead Sea. Kieler Meeresforschungen 5: 416–424.

    Google Scholar 

  • Oren, A. 1983. Clostridium lortetii sp. nov, a halophilic obligatory anaerobic bacterium producing endospores with attached vacuoles. Archives of Microbiology 136: 42–48.

    Article  Google Scholar 

  • Oren, A. 1986. The ecology and taxonomy of anaerobic halophilic eubacteria. FEMS Microbiology Reviews 39: 23–29.

    Article  Google Scholar 

  • Oren, A. 1988. The microbial ecology of the Dead Sea. Advances in Microbial Ecology 10: 193–229.

    CAS  Google Scholar 

  • Oren, A. and Shilo, M. 1981. Bacteriorhodopsin in a bloom of halobacteria in the Dead Sea. Archives of Microbiology 130: 185–187.

    Article  CAS  Google Scholar 

  • Oren, A. and Shilo, M. 1982. Population dynamics of Dunaliella parva in the Dead Sea. Limnology and Oceanography 27: 201–211.

    Article  Google Scholar 

  • Pack, D.A. 1919. Two ciliata of Great Salt Lake. Biological Bulletin 36: 273–282.

    Article  Google Scholar 

  • Paterek, J.R. and Smith, P.H. 1985. Isolation and characterization of a halophilic methanogen from Great Salt Lake. Applied and Environmental Microbiology 50: 877–881.

    PubMed  CAS  Google Scholar 

  • Por, F.D. 1972. Hydrobiological notes on the high-salinity waters of the Sinai Peninsula. Marine Biology 14: 111–119.

    Article  Google Scholar 

  • Por, F.D. 1980. A classification of hypersaline waters, based on trophic criteria. Marine Ecology 1: 121–131.

    Article  Google Scholar 

  • Post, F.J. 1977. The microbial ecology of the Great Salt Lake. Microbial Ecology 3: 143–165.

    Article  CAS  Google Scholar 

  • Post, F.J. 1981. Microbiology of the Great Salt Lake north arm. Hydrobiologia 81: 59–69.

    Article  Google Scholar 

  • Post, F.J., Borowitzka, L.J., Borowitzka, M.A., Mackay, B. and Moulton, T. 1983. The protozoa of a Western Australian hypersaline lagoon. Hydrobiologia 105: 95–113.

    Article  Google Scholar 

  • Potts, M. 1980. Blue-green algae (Cyanophyta) in marine coastal environments of the Sinai Peninsula; distribution, zonation, stratification and taxonomic diversity. Phycologia 19: 60–73.

    Article  Google Scholar 

  • Priscu, J.C., Axler, R.P., Carlton, R.G., Reuter, J.E., Arneson, P.A. and Goldman, C.R. 1982. Vertical profiles of primary productivity, biomass and physico-chemical properties in meromictic Big Soda Lake, Nevada, U.S.A. Hydrobiologia 96:113–120.

    Article  Google Scholar 

  • Quesada, E., Ventosa, A., Ruiz-Berraquero, F. and Ramos-Cormenzana, A. 1984. Deleya halophila, a new species of moderately halophilic bacteria. International Journal of Systematic Bacteriology 34: 287–292.

    Article  CAS  Google Scholar 

  • Raymond, J.C. and Sistrom, W.R. 1969. Ectothiorhodospira halophila: a new species of the genus Ectothiorhodospira. Archiv für Mikrobiologie 69: 121–126.

    Article  PubMed  CAS  Google Scholar 

  • Reiser, R. and Tasch, P. 1960. Investigation of the viability of osmophile bacteria of great geological age. Transactions of the Kansas Academy of Science 63: 31–34.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Valera, F. 1986. The ecology and taxonomy of aerobic chemoorganotrophic halophilic eubacteria. FEMS Microbiology Reviews 39: 17–22.

    Article  Google Scholar 

  • Rodriguez-Valera, F. 1988. Characteristics and microbial ecology of hypersaline environments, p. 3–30 in Rodriguez-Valera, F. (editor), Halophilic Bacteria, Vol. I, CRC Press, Boca Raton.

    Google Scholar 

  • Rodriguez-Valera, F., Ruiz-Berraquero, F. and Ramos-Cormenzana, A. 1981. Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microbial Ecology 7: 235–243.

    Article  Google Scholar 

  • Rodriguez-Valera, F., Ventosa, A., Juez, G. and Imhoff, J.F. 1985. Variation of environmental features and microbial populations with salt concentration in a multi-pond saltern. Microbial Ecology 11: 107–115.

    Article  CAS  Google Scholar 

  • Roedder, E. 1984. The fluids of salts. American Mineralogist 69: 413–439.

    CAS  Google Scholar 

  • Rubentschik, L. 1926a. Ãœber einige neue Urobakterienarten. Zentralblatt für Bakteriologie II 66: 161–180.

    Google Scholar 

  • Rubentschik, L. 1926b. Ãœber die Einwirkung von Salzen auf die Lebenstatigkeit der Urobakterien. Zentralblatt für Bakteriologie II 67: 167–194.

    CAS  Google Scholar 

  • Rubentschik, L. 1929. Zur Nitrifikation bei hohen Salzkonzentrationen. Zentralblatt für Bakteriologie II 77: 1–18.

    Google Scholar 

  • Shearman, D.J. 1966. Origin of marine evaporites by diagenesis. Transactions of the Institute of Mining and Metallurgy 75: 208–215.

    CAS  Google Scholar 

  • Sonnenfeld, P. 1984. Brines and Evaporites. Academic Press. New York. 613 pp.

    Google Scholar 

  • Stephens, D.W. and Gillespie, D.M. 1976. Phytoplankton production in the Great Salt Lake, Utah, and a laboratory study of algal response to enrichment. Limnology and Oceanography 21: 74–87.

    Article  CAS  Google Scholar 

  • Tasch, P. 1960. Paleoecological observations of the Wellington Salt (Hutchinson Member). Transactions of the Kansas Academy of Science 63: 24–30.

    Article  Google Scholar 

  • Tasch, P. 1963. Fossil content of salt and association evaporites, pp. 96–102 in Bersticker, A.C., Hoekstra, K.E. and Hall, J.F. (editors), Symposium on Salt, Northern Ohio Geological Society, Cleveland.

    Google Scholar 

  • Tasch, P. 1969. Biochemical and geochemical aspects of the White Salt Pan—Bonaire, Netherlands Antilles, pp. 204–210 in Rau, J.L. and Dellwig, L.F. (editors), Third Symposium on Salt, vol. 1, Northern Ohio Geological Society, Cleveland.

    Google Scholar 

  • Timms, B.V. 1983. A study of benthic communities in some shallow saline lakes of western Victoria, Australia. Hydrobiologia 105: 165–177.

    Article  Google Scholar 

  • Tindall, B.J. 1988. Prokaryotic life in the alkaline, saline, athalassic environment, p. 31–67 in Rodriguez-Valera, F. (editor), Halophilic Bacteria, Vol. I, CRC Press, Boca Raton.

    Google Scholar 

  • Tindall, B.J. and Trüper, H.G. 1986. Ecophysiology of the aerobic halophilic archaebacteria. Systematic and Applied Microbiology 7: 202–212.

    Article  CAS  Google Scholar 

  • Tindall, B.J., Mills, A.A. and Grant, W.D. 1980. An alkalophilic red halophilic bacterium with a low magnesium requirement from a Kenyan soda lake. Journal of General Microbiology 116: 257–260.

    Google Scholar 

  • Tindall, B.J., Ross, H.N.M. and Grant, W.D. 1984. Natronobacterium, gen. nov. and Natronococcus, gen. nov., two new genera of haloalkalophilic archaebacteria. Systematic and Applied Microbiology 5: 41–57.

    Article  Google Scholar 

  • Tominaga, H. and Fukui, F. 1981. Saline lakes at Syowa Oasis, Antarctica. Hydrobiologia 82: 375–389.

    Article  Google Scholar 

  • Walsby, A.E., van Rijn, J. and Cohen, Y. 1983. The biology of a new gas-vacuolate cyanobacterium, Dactylococcopsis salina sp. nov, in Solar Lake. Proceedings of the Royal Society of London B 217: 417–447.

    Article  Google Scholar 

  • Weisser, J. and Trüper, H. 1985. Osmoregulation in a new haloalkaliphilic Bacillus from the Wadi Natrun (Egypt). Systematic and Applied Microbiology 6: 7–11.

    CAS  Google Scholar 

  • Wilbert, N. and Kahan, D. 1981. Ciliates of Solar Lake on the Red Sea shore. Archiv für Protistenkunde 124: 70–95.

    Google Scholar 

  • Winkler, D.W. (editor). 1977. An ecological study of Mono Lake, California. Institute for Ecology Publications 12, University of California, Davis, 190 pp.

    Google Scholar 

  • Wright, S.W. and Burton, H.R. 1981. The biology of Antarctic saline lakes. Hydrobiologia 82: 319–338.

    Article  Google Scholar 

  • Zeikus, J.G., Hegge, P.W., Thompson, T.E., Phelps, T.J. and Langworthy, T.A. 1983. Isolation and description of Haloanaerobium praevalens gen. nov. and sp. nov., an obligately anaerobic halophile common to Great Salt Lake sediments. Current Microbiology 9: 225–234.

    Article  CAS  Google Scholar 

  • ZoBell, C.E., Anderson, D.Q. and Smith, W.W. 1937. The bacteriostatic and bactericidal action of Great Salt Lake water. Journal of Bacteriology 33: 253–262.

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Javor, B. (1989). Biology. In: Hypersaline Environments. Brock/Springer Series in Contemporary Bioscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74370-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74370-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74372-6

  • Online ISBN: 978-3-642-74370-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics