Skip to main content

Hypersaline, Alkaline Lakes

  • Chapter
Hypersaline Environments

Part of the book series: Brock/Springer Series in Contemporary Bioscience ((BROCK/SPRINGER))

Abstract

Hypersaline, alkaline (>pH 9) lakes constitute a special class of extremely saline lakes in closed basins. The major ions are typically Na+, Cl-, HCO -3 and CO 2-3 . Sulfate is proportionately low. The high concentrations of HCO -3 and CO 2-3 are largely responsible for buffering these lakes at such high pH. From both biological and geochemical viewpoints, hypersaline, alkaline lakes of the African Rift Valley are the best known. Unfortunately, much of the literature describing in situ biological activity in those lakes and their sediments concerns the less saline lakes of the region (Tailing et al., 1973; Hammer, 1981; Melack, 1981). However, the reports of the activity and isolation of bacteria involved in the reductive part of the sulfur cycle in the more extremely hypersaline, alkaline lakes of Africa may support the theory that these microorganisms can play a major role in the development of alkaline conditions in such closed basins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abd-el-Malek, Y. and Rizk, S.G. 1963. Bacterial sulphate reduction and the development of alkalinity. III. Experiments under natural conditions in the Wadi Natrun. Journal of Applied Bacteriology 26: 20–26.

    Article  CAS  Google Scholar 

  • Axler, R.P., Gersberg, R.M., and Paulson, L.J. 1978. Primary productivity in meromictic Big Soda Lake, Nevada. Great Basin Naturalist 38: 187–192.

    CAS  Google Scholar 

  • Bien, E. and Schwartz, W. 1965. Geomikrobiologische Untersuchungen. VI. Ãœber das Vorkommen konservierter toter und lebender Bakterienzellen in Salzgesteinen. Zeitschrift für Allgemeine Mikrobiologie 5: 185–205.

    Article  PubMed  CAS  Google Scholar 

  • Bradley, W.H. and Eugster, H.P. 1969. Geochemistry and paleolimnology of the trona deposits and associated authigenic minerals of the Green River Formation of Wyoming. United States Geological Survey Professional Paper 496-B, 71 .

    Google Scholar 

  • Cloern, J.E., Cole, B.E., and Oremland, R.S. 1983a. Autotrophic processes in meromictic Big Soda Lake, Nevada. Limnology and Oceanography 28: 1049–1061.

    Article  CAS  Google Scholar 

  • Cloern, J.E., Cole, B.E., and Oremland, R.S. 1983b. Seasonal changes in the chemistry and biology of a meromictic lake (Big Soda Lake, Nevada, U.S.A.). Hydrobiologia 105: 195–206.

    Article  CAS  Google Scholar 

  • Cole, G.A., Whiteside, M.C., and Brown, R.J. 1967. Unusual monomixis in two saline Arizona ponds. Limnology and Oceanography 12: 584–591.

    Article  Google Scholar 

  • Eugster, H.P. 1970. Chemistry and origin of the brines of Lake Magadi, Kenya. Mineralogical Society of America Special Paper 3: 213–235.

    Google Scholar 

  • Eugster, H.P. 1980. Lake Magadi, Kenya, and its precursors, pp. 195–232 in Nissenbaum, A. (editor), Hypersaline Brines and Evaporitic Environments, Developments in Sedimentology 28, Elsevier Scientific, New York.

    Chapter  Google Scholar 

  • Eugster, H.P. and Hardie, L.A. 1975. Sedimentation in an ancient playa-lake complex: the Wilkins Peak Member of the Green River Formation of Wyoming. Geological Society of America Bulletin 86: 319–334.

    Article  CAS  Google Scholar 

  • Eugster, H.P. and Hardie, L.A. 1978. Saline lakes, pp. 237–293 in Lerman, A. (editor), Lakes. Chemistry Geology Physics, Springer-Verlag, New York.

    Google Scholar 

  • Friedman, I., Smith, G.I., and Hardcastle, K.G. 1976. Studies of Quaternary saline lakes—II. Isotopic and compositional changes during desiccation of the brines in Owens Lake, California, 1969–1971. Geochimica et Cosmochimica Acta 40: 501–511.

    Article  CAS  Google Scholar 

  • Hammer, U.T. 1981. Primary productivity in saline lakes: a review. Hydrobiologia 81: 47–57.

    Article  Google Scholar 

  • Hardie, L.A. 1968. The origin of the Recent non-marine evaporite deposit of Saline Valley, Inyo County, California. Geochimica et Cosmochimica Acta 32: 1279–1301.

    Article  Google Scholar 

  • Holser, W.T. and Kaplan, I.R. 1966. Isotope geochemistry of sedimentary sulfates. Chemical Geology 1: 93–135.

    Article  CAS  Google Scholar 

  • Imhoff, J.F. 1988. Halophilic phototrophic bacteria, p. 85–108 in Rodriguez-Valera, F. (editor), Halophilic Bacteria, Vol. I. CRC Press, Boca Raton.

    Google Scholar 

  • Imhoff, J.F. and Trüper, H.G. 1977. Ectothiorhodospira halochloris sp. nov., a new extremely halophilic phototrophic bacterium containing bacteriochlorophyll b. Archives of Microbiology 114: 115–121.

    Article  CAS  Google Scholar 

  • Imhoff, J.F., Hashwa, F., and Trüper, H.G. 1978. Isolation of extremely halophilic phototrophic bacteria from the alkaline Wadi Natrun, Egypt. Archiv für Hydrobiologie 84: 381–388.

    Google Scholar 

  • Imhoff, J.F., Sahl, H.G., Soliman, G.S.H., and Trüper, H.G. 1979. The Wadi Natrun: chemical composition and microbial mass developments in alkaline brines of eutrophic desert lakes. Geomicrobiology Journal 1: 219–234.

    Article  CAS  Google Scholar 

  • Imhoff, J.F., Tindall, B.J., Grant, W.D., and Trüper, H.G. 1981. Ectothiorhodospira vacuolata sp. nov., a new phototrophic bacterium from soda lakes. Archives of Microbiology 130: 238–242.

    Article  CAS  Google Scholar 

  • Iversen, N., Oremland, R.S., and Klug, M.J. 1987. Big Soda Lake (Nevada). 3. Pelagic methanogenesis and anaerobic methane oxidation. Limnology and Oceanography 32: 804–814.

    Article  CAS  Google Scholar 

  • Jannasch, H.W. 1957. Die bakterielle Rotfarbung der Salzseen des Wadi Natrun. Archiv für Hydrobiologie 53: 425–433.

    Google Scholar 

  • Jaschof, H. and Schwartz, W. 1961. Untersuchungen über Lebensgemeinschaften halophiler Mikroorganismen. II. Ãœber die Mikrobenassoziationen einer alkalischen Sole aus dem Hochtal von Mexiko. Zeitschrift für Allgemeine Mikrobiologie 1: 258–273.

    Article  Google Scholar 

  • Jones, B.F., Vandenburgh, A.S., Truesdell, A.H., and Rettig, S.L. 1969. Interstitial brines in playa sediments. Chemical Geology 4: 253–262.

    Article  CAS  Google Scholar 

  • Jones, B.F., Eugster, H.P., and Rettig, S.L. 1977. Hydrochemistry of the Lake Magadi basin, Kenya. Geochimica et Cosmochimica Acta 41: 53–72.

    Article  CAS  Google Scholar 

  • Kimmel, B.L., Gersberg, R.M., Paulson, L.J., Axler, R.P., and Goldman, C.R. 1978. Recent changes in the meromictic status of Big Soda Lake, Nevada. Limnology and Oceanography 23: 1021–1025.

    Article  CAS  Google Scholar 

  • Longinelli, A. and Craig, H. 1967. Oxygen-18 variations in sulfate ions in sea water and saline lakes. Science 156: 56–59.

    Article  PubMed  CAS  Google Scholar 

  • Mason, D.T. 1967. Limnology of Mono Lake. University of California Publications in Zoology 83: 1–102.

    Google Scholar 

  • Melack, J.M. 1981. Photosynthetic activity of phytoplankton in tropical African soda lakes. Hydrobiologia 81: 71–85

    Article  Google Scholar 

  • Melack, J.M. 1983. Large, deep salt lakes: a comparative limnological analysis. Hydrobiologia 105: 223–230.

    Article  Google Scholar 

  • Morth, S. and Tindall, B.J. 1985. Variation of polar lipid composition within haloalkalophilic archaebacteria. Systematic and Applied Microbiology 6: 247–250.

    Google Scholar 

  • Nehrkorn, A. and Schwartz, W. 1961. Untersuchungen über Lebensgemeinschaften halophiler Mikroorganismen. I. Mikroorganismen aus Salzeen der californischen Wustengebeite und aus einer Natriumchlorid-Sole. Zeitschrift für Allgemeine Mikrobiologie 1: 121–141.

    Article  CAS  Google Scholar 

  • Oremland, R.S., Marsh, L., and Des Marais, D.J. 1982. Methanogenesis in Big Soda Lake, Nevada: an alkaline, moderately hypersaline desert lake. Applied and Environmental Microbiology 43: 462–468.

    PubMed  CAS  Google Scholar 

  • Priscu, J.C., Axler, R.P., Carlton, R.G., Reuter, J.E., Arneson, P.A., and Goldman, C.R. 1982. Vertical profiles of primary productivity, biomass and physico-chemical properties in meromictic Big Soda Lake, Nevada, U.S.A. Hydrobiologia 96:113–120.

    Article  Google Scholar 

  • Smith, G.I., and Haines, D.V. 1964. Character and distribution of nonclastic minerals in the Searles Lake evaporite deposit, California. United States Geological Survey Bulletin 1181-P, 58 pp.

    Google Scholar 

  • Smith, R.L. and Oremland, R.S. 1983. Anaerobic oxalate degradation: widespread natural occurrence in aquatic sediments. Applied and Environmental Microbiology 46: 106–113.

    PubMed  CAS  Google Scholar 

  • Smith, R.L. and Oremland, R.S. 1987. Big Soda Lake (Nevada). 2. Pelagic sulfate reduction. Limnology and Oceanography 32: 794–803.

    Article  CAS  Google Scholar 

  • Tailing, J.F., Wood, R.B., Prosser, M.V., and Baxter, R.M. 1973. The upper limit of photosynthetic productivity by phytoplankton: evidence from Ethiopian soda lakes. Freshwater Biology 3: 53–76.

    Article  Google Scholar 

  • Tew, R.W. 1980. Halotolerant Ectothiorhodospira survival in mirabilite: experiments with a model of chemical stratification by hydrate deposition in saline lakes. Geomicrobiology Journal 2: 13–20.

    Article  CAS  Google Scholar 

  • Tindall, B.J. 1985. Qualitative and quantitative distribution of diether lipids in haloalkalophilic archaebacteria. Systematic and Applied Microbiology 6: 243–246.

    CAS  Google Scholar 

  • Tindall, B.J. 1988. Prokaryotic life in the alkaline, saline, athalassic environment, p. 31–67 in Rodriguez-Valera, F. (editor), Halophilic Bacteria, Vol. I. CRC Press, Boca Raton.

    Google Scholar 

  • Tindall, B.J., Mills, A.A., and Grant, W.D. 1980. An alkalophilic red halophilic bacterium with a low magnesium requirement from a Kenyan soda lake. Journal of General Microbiology 116: 257–260.

    Google Scholar 

  • Tindall, B.J., Ross, H.N.M., and Grant, W.D. 1984. Natronobacterium, gen. nov. and Natronococcus gen. nov., two new genera of haloalkalophilic archaebacteria. ematic and Applied Microbiology 5:41–57.

    Article  Google Scholar 

  • Weisser, J. and Trüper, H. 1985. Osmoregulation in a new haloalkalophilic bacillus from the Wadi Natrun (Egypt). Systematic and Applied Microbiology 6: 7–11.

    CAS  Google Scholar 

  • Winkler, D.W. (editor). 1977. An Ecological Study of Mono Lake, California Institute of Ecology Publication 12. University of California. Davis. 190 .

    Google Scholar 

  • Zehr, J.P., Harvey, R.W., Oremland, R.S., Cloern, J.E., George, L.H., and Lane, J.L. 1987. Big Soda Lake (Nevada). 1. Pelagic bacterial heterotrophy and biomass. Limnology and Oceanography 32: 781–793.

    Article  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Javor, B. (1989). Hypersaline, Alkaline Lakes. In: Hypersaline Environments. Brock/Springer Series in Contemporary Bioscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74370-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74370-2_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74372-6

  • Online ISBN: 978-3-642-74370-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics