Skip to main content

Part of the book series: Brock/Springer Series in Contemporary Bioscience ((BROCK/SPRINGER))

  • 358 Accesses

Abstract

The Dead Sea (see map, Figure 14.1), like the Great Salt Lake, has undergone recent physical and chemical changes as a result of human influence. Before 1979, this very deep lake was characterized by two basins: a small, shallow (up to about 8 m deep) southern basin (Figure 19.1a), and a larger, deeper (340 m deep), density-stratified, meromictic northern basin (Figure 19.1b). Details of the Dead Sea have been presented by Neev and Emery (1967), Nissenbaum (1975), and Steinhorn (1985). The Jordan River supplies the major source of water for this terminal lake. After about 1964, the use of water for irrigation from the Jordan River and its watershed reduced the inflow so much that evaporation in the Dead Sea exceeded inflow. Between 1930 and 1979, the water in the lake dropped 10 m and the southern basin was completely exposed. By 1975, the mixolimnion had increased in salinity to the point that cooler winter temperatures in the surface layers reduced the density differences between the upper and lower layers of the lake. This resulted in increased mixing, deepening of the mixolimnion, and eventually complete overturn in February, 1979 (Steinhorn et al., 1979). The changes in the structure of the Dead Sea before overturn were summarized by Beyth (1980) and Steinhorn and Assaf (1980) while those during the 1975–1979 period were reported by Steinhorn et al. (1979) and Steinhorn (1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, R., Kates, M., Baedecker, M.J., Kaplan, I.R., and Ackman, R.G. 1977. The stereoisomeric composition of phytanyl chains in lipids of Dead Sea sediments. Geochimica et Cosmochimica Acta 41: 1381–1390.

    Article  CAS  Google Scholar 

  • Bentor, Y.K. 1961. Some geochemical aspects of the Dead Sea and the question of its age. Geochimica et Cosmochimica Acta 25: 239–260.

    Article  CAS  Google Scholar 

  • Beyth, M. 1980. Recent evolution and present stage of Dead Sea brines, pp. 155–165 in Nissenbaum, A. (editor), Hypersaline Brines and Evaporitic Environments, Developments in Sedimentology 28, Elsevier Scientific, New York.

    Google Scholar 

  • Elazari-Volcani, B. 1940a. Algae in the bed of the Dead Sea. Nature (London) 145: 975–977.

    Article  Google Scholar 

  • Elazari-Volcani, B. 1940b. Studies on the Microflora of the Dead Sea. Ph.D. Thesis. Hebrew University of Jerusalem. 119 pp.

    Google Scholar 

  • Elazari-Volcani, B. 1943a. A dimastigamoeba in the bed of the Dead Sea. Nature (London) 152: 275–277.

    Google Scholar 

  • Elazari-Volcani, B. 1943b. Bacteria in the bottom of the Dead Sea. Nature (London) 152: 274–275.

    Article  Google Scholar 

  • Friedman, G.M. 1965. On the origin of aragonite in the Dead Sea. Israel Journal of Earth-Sciences 14: 79–85.

    Google Scholar 

  • Kaplan, I.R. and Baedecker, M.J. 1970. Biological productivity in the Dead Sea. Part II. Evidence for phosphatidyl glycerophosphate lipid in sediment. Israel Journal of Chemistry 8: 529–533.

    CAS  Google Scholar 

  • Kaplan, I.R. and Friedman, A. 1970. Biological productivity of the Dead Sea. Part I. Microorganisms in the water column. Israel Journal of Chemistry 8: 513–528.

    CAS  Google Scholar 

  • Katz, A., Starinsky, A., Taitel-Goldman, N., and Beyth, M. 1981. Solubilities of gypsum and halite in the Dead Sea and in its mixtures with seawater. Limnology and Oceanography 26: 709–716.

    Article  CAS  Google Scholar 

  • Mullakhanbhai, M.F. and Larsen, H. 1975. Halobacterium volcanii spec, nov., a Dead Sea halobacterium with a moderate salt requirement. Archives of Microbiology 104: 207–214.

    Article  PubMed  CAS  Google Scholar 

  • Neev, D. and Emery, K.O. 1967. The Dead Sea. Depositional processes and environment of evaporites. Geological Survey of Israel Bulletin 41: 1–147.

    Google Scholar 

  • Nissenbaum, A. 1974. Trace elements in Dead Sea sediments. Israel Journal of Earth-Sciences 23:111–116.

    CAS  Google Scholar 

  • Nissenbaum, A. 1975. The microbiology and biogeochemistry of the Dead Sea. Microbial Ecology 2: 139–161.

    Article  CAS  Google Scholar 

  • Nissenbaum, A. and Kaplan, I.R. 1976. Sulfur and carbon isotopic evidence for bio-geochemical processes in the Dead Sea ecosystem, pp. 309–325 in Nriagu, J.O. (editor), Environmental Biogeochemistry, Vol. 1, Carbon, Nitrogen, Phosphorus, Sulfur and Selenium Cycles, Ann Arbor Science, Ann Arbor.

    Google Scholar 

  • Oren, A. 1981. Approaches to the microbial ecology of the Dead Sea. Kieler Meeresforschungen 5: 416–424.

    Google Scholar 

  • Oren, A. 1983a. Bacteriorhodopsin-mediated CO2 photoassimilation in the Dead Sea. Limnology and Oceanography 28: 33–41.

    Article  CAS  Google Scholar 

  • Oren, A. 1983b. Clostridium lortetii sp. nov., a halophilic obligatory anaerobic bacterium producing endospores with attached vacuoles. Archives of Microbiology 136: 42–48.

    Article  Google Scholar 

  • Oren, A. 1983c. Halobacterium sodomense sp. nov., a Dead Sea halobacterium with an extremely high magnesium requirement. International Journal of Systematic Bacteriology 33: 381–386.

    Article  Google Scholar 

  • Oren A. 1983d. Population dynamics of halobacteria in the Dead Sea water column. Limnology and Oceanography 28: 1094–1103.

    Article  Google Scholar 

  • Oren, A. 1985. The rise and decline of a bloom of halobacteria in the Dead Sea. Limnology and Oceanography 30: 911–915.

    Article  Google Scholar 

  • Oren, A. 1987. A procedure for the selective enrichment of Halobacteroides halobius and related bacteria from anaerobic hypersaline sediments. FEMS Microbiology Letters 42: 201–204.

    Article  Google Scholar 

  • Oren, A. 1988. The microbial ecology of the Dead Sea. Advances in Microbial Ecology 10: 193–229.

    CAS  Google Scholar 

  • Oren, A. and Shilo, M. 1981. Bacteriorhodopsin in a bloom of halobacteria in the Dead Sea. Archives of Microbiology 130: 185–187.

    Article  CAS  Google Scholar 

  • Oren, A. and Shilo, M. 1982. Population dynamics of Dunaliella parva in the Dead Sea. Limnology and Oceanography 27: 201–211.

    Article  Google Scholar 

  • Oren, A. and Shilo, M. 1985. Factors determining the development of algal and bacterial blooms in the Dead Sea: a study of simulation experiments in outdoor ponds. FEMS Microbiology Ecology 31: 229–237.

    Article  CAS  Google Scholar 

  • Oren, A., Weisburg, W.G., Kessel, M., and Woese, C.R. 1984. Halobacteroides halobius gen. nov., sp. nov., a moderately halophilic anaerobic bacterium from the bottom sediments of the Dead Sea. Systematic and Applied Microbiology 5: 58–70.

    Article  CAS  Google Scholar 

  • Oren, A., Pohla, H., and Stackebrandt, E. 1987. Transfer of Clostridium lortetii to a new genus Sporohalobacter gen. nov. as Sporohalobacter lortetii comb, nov., and description of Sporohalob acter marismortui sp. nov. Systematic and Applied Microbiology 9: 239–246.

    Article  CAS  Google Scholar 

  • Post, F.J. 1977. The microbial ecology of the Great Salt Lake. Microbial Ecology 3:143–165.

    Article  CAS  Google Scholar 

  • Sass, E. and Ben-Yaakov, S. 1977. The carbonate system in hypersaline solutions: Dead Sea brines. Marine Chemistry 5: 183–199.

    Article  CAS  Google Scholar 

  • Schonberger, E., Kassovicz, J., and Shenhar, A. 1985. Determination of some heavy metals in the Dead Sea. International Journal of Environmental Analytical Chemistry 21: 283–297.

    Article  CAS  Google Scholar 

  • Steinhorn, I. 1983. In situ salt precipitation at the Dead Sea. Limnology and Oceanography 28: 580–585.

    Article  Google Scholar 

  • Steinhorn, I. 1985. The disappearance of the long term meromictic stratification in the Dead Sea. Limnology and Oceanography 30: 451–472.

    Article  CAS  Google Scholar 

  • Steinhorn, I., Assaf, G., Gat, J.R., Nishry, A., Nissenbaum, A., Stiller, M, Beyth, M., Neev, D., Garber, R., Friedman, G.M., and Weiss, W. 1979. The Dead Sea: deepening of the mixolimnion signifies the overture to overturn of the water column. Science 206: 55–57.

    Article  PubMed  CAS  Google Scholar 

  • Steinhorn, I. and Assaf, G. 1980. The physical structure of the Dead Sea water column, 1975–1977, pp. 145–153 in Nissenbaum, A. (editor), Hypersaline Brines and Evaporitic Environments, Developments in Sedimentology 28, Elsevier Scientific, New York.

    Chapter  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Javor, B. (1989). Dead Sea. In: Hypersaline Environments. Brock/Springer Series in Contemporary Bioscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74370-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74370-2_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74372-6

  • Online ISBN: 978-3-642-74370-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics