Skip to main content

The Relationship Between Biopterin and Folate Metabolism

  • Chapter
  • 99 Accesses

Abstract

Phenylketonuria (PKU) is a metabolic disorder that is inherited in an autosomal recessive pattern and is caused by a defect in the hepatic phenylalanine (PA) hydroxylating system. This system consists of two enzymes, phenylalanine 4-hydroxylase (PAH) (EC 1.14.16.1) and dihydropteridine reductase (DHPR) (EC 1.6.99.7), and a coenzyme, tetrahydrobiopterin (BH4), which acts not only on PAH but also on tyrosine 3-hydroxylase (EC 1.14.16.2) and tryptophan 5-hydroxylase (EC 1.14.16.4) — the former on the dopamine and norepinephrine synthesis pathway, the latter on the serotonin synthesis pathway (Fig. 1). During each hydroxylation cycle of these three enzymes, BH4 is oxidized to quininoid dihydrobiopterin (q-BH2), the latter being transformed partly into L-erythro-7, 8-dihydrobiopterin (7,8-BH2). They are reduced to BH4 by DHPR and by dihydrofolate reductase (DHFR) (EC 1.5.1.3), respectively (Fig. 1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith I (1974) Atypical phenylketonuria accompanied by a severe progressive neurological illness unresponsive to dietary treatment. Arch Dis Child 49:242

    Google Scholar 

  2. Harpey J-P (1983) Les défauts de synthèse des bioptérines: les déficits complets (réductase et synthétase). Arch Fr Pédiatr 40:231–235

    PubMed  CAS  Google Scholar 

  3. Smith I, Hyland K, Kendall B. Leeming RJ (1985) Clinical role of pteridine therapy in tetrahydrobiopterin deficiency. J Inherited Metab Dis 8 (Suppl 1): 39–45

    Article  PubMed  Google Scholar 

  4. Harpey J-P, Rey F, Leeming RJ (1984) Seven year follow-up in a child with early-treated dihydropteridine-reductase deficiency. 22nd Annual symposium, Society for the Study of Inborn Errors of Metabolism. Newcastle upon Tyne, 1984

    Google Scholar 

  5. Irons M, Levy HL, O’Flynn ME, Stack CV, Langlais PJ, Butler IJ, Milstien S, Kaufman S (1987) Folinic acid therapy in treatment of dihydropteridine reductase deficiency. J Pediatr 110:61–67

    Article  PubMed  CAS  Google Scholar 

  6. Pollock RJ, Kaufman S (1978) Dihydropteridine reductase may function in tetrahydrofolate metabolism. J Neurochem 31:115–123

    Article  PubMed  CAS  Google Scholar 

  7. Turner AJ, Ponzio F, Algeri S (1974) Dihydropteridine reductase in rat brain: regional distribution and the effect of eatecholamine-depleting drugs. Brain Res 70:550–558

    Google Scholar 

  8. Nichol CA, Lee CL, Edelstein MP, Chao JY, Duch DS (1983) Biosynthesis of tetrahydrobiopterin by de novo and salvage pathways in adrenal medulla extracts, mamalian cell cultures and rat brain in vivo. Proc Natl Acad Sci USA 80:1546–1550

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Matthews RG, Kaufman S (1980) Characterization of the dihydropteridine reductase activity of the pig liver methylenetetrahydrofolate reductase. J Biol Chem 255:6014–6017

    PubMed  CAS  Google Scholar 

  10. Howells D, Smith I, Leonard J, Hyland K (1986) Tetrahydrobiopterin in dihydropteridine reductase deficiency. N Engl J Med 314:520–521

    PubMed  CAS  Google Scholar 

  11. Harpey J-P, Le Moel G, Zittoun J (1983) Follow-up in a child with 5,10-methylenetetrahy- drofolate reductase deficiency. J Pediatr 103(6): 1007

    Article  PubMed  CAS  Google Scholar 

  12. Clayton PT, Smith I, Harding B, Hyland K, Leonard K, Leeming RJ (1986) Subacute combined degeneration of the cord, dementia and parkinsonism due to an inborn error of folate metabolism. J Neurol Neurosurg Psychiatry 49:920–927

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Leeming RJ, Harpey J-P, Brown SM, Blair JA (1983) Tetrahydrofolate and hydroxocobalamin in the management of dihydropteridine reductase deficiency. J Ment Deflc Res 26:21–25

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Harpey, J.P. (1989). The Relationship Between Biopterin and Folate Metabolism. In: Cooper, B.A., Zittoun, J.A. (eds) Folates and Cobalamins. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74364-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74364-1_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50653-9

  • Online ISBN: 978-3-642-74364-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics