Sensitization of the Adrenergic System in Early Myocardial Ischemia: Independent Regulation of β-Adrenergic Receptors and Adenylate Cyclase

  • R. H. Strasser
  • R. Marquetant
  • W. Kübler
Conference paper

Abstract

The dynamic regulation of the adrenergic system plays an important role in the adaptation of the cardiovascular system both in health and in disease. In disease, presynaptic mechanisms involved in the release of catecholamines and/or post-synaptic mechanisms involved in adrenergic transmission to the cell might be altered. In acute myocardial ischemia, large quantities of catecholamines are presynaptically released [1–5]. These catecholamines activate postsynaptically adrenergic and especially β-adrenergic receptors [6–8]. But, as shown in many tissues [6, 9–12] including heart [13,14], agonist occupancy of β-adrenergic receptors also leads to unresponsiveness to further stimulation, a phenomenon called tachyphylaxis or desensitization.

Keywords

Ischemia Noradrenaline Cyanide Catecholamine Cardiol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wollenberger A, Shabab L (1965) Anoxia-induced release of noradrenaline from the isolated perfused heart. Nature 207:88–89.PubMedCrossRefGoogle Scholar
  2. 2.
    Carlsson L, Abrahamsson T, Amgren O (1986) Release of noradrenaline in myocardial ischemia — importance of local inactivation by neuronal and extraneuronal mechanisms. J Cardiovasc Res 8:545–553.Google Scholar
  3. 3.
    Schömig A, Dart AM, Dietz R, Mayer R, Kuebler W (1984) Release of endogenous cate-cholamines in the ischemic myocardium of the rat. Part A. Locally mediated release. Circ Res 55:689–701.PubMedGoogle Scholar
  4. 4.
    Schömig A, Fischer S, Kurz T, Richardt G, Schömig E (1987) Nonexocytotic release of endogenous noradrenaline in the ischemic and anoxie rat heart: mechanism and metabolic requirements. Circ Res 60:194–205.PubMedGoogle Scholar
  5. 5.
    Schömig A, Kurz T, Richardt G, Schömig E (1988) Neuronal sodium homeostasis and axoplasmic amine conentration determine calcium-independent noradrenaline release in normoxic and ischemic rat heart. Circ Res 63:1–13.Google Scholar
  6. 6.
    Lefkowitz RJ, Stadel JM, Caron MG (1983) Adenylate cyclase-coupled beta-adrenergic receptors: structure and mechanism of activation and desensitization. Annu Rev Biochem 52:159–186.PubMedCrossRefGoogle Scholar
  7. 7.
    Lefkowitz RJ, Caron MG, Stiles GL (1984) Mechanism of membrane-receptor regulation. Biochemical, physiological, and clinical insights derived from studies of the adrenergic receptors. N Engl J Med 310:1570–1579.PubMedCrossRefGoogle Scholar
  8. 8.
    Stiles GL, Caron MG, Lefkowitz RJ (1984) Beta-adrenergic receptors: biochemical mechanisms of physiological regulation. Pharmacol Rev 64:661–743.Google Scholar
  9. 9.
    Harden TK (1983) Agonist-induced desensitization of the beta-adrenergic receptor-linked adenylate cyclase. Pharmacol Rev 35:5–32.PubMedGoogle Scholar
  10. 10.
    Perkins JP (1983) Desensitization of the response of adenylate cyclase to catecholamines. Curr Top Membr Transp 18:85–108.Google Scholar
  11. 11.
    Sibley DR, Lefkowitz RJ (1985) Molecular mechanisms of receptor desensitization using the beta-adrenergic receptor-coupled adenylate cyclase system as a model. Nature 317:124–129.PubMedCrossRefGoogle Scholar
  12. 12.
    Strasser RH (1989) Phosphorylation of the beta-adrenergic receptor: mechanisms of desensitization. In: Moudgil VK (ed) Receptor Phosphorylation. CRC, Boca Raton, pp 199–225.Google Scholar
  13. 13.
    Limas CJ, Limas C (1984) Rapid recovery of cardiac beta-adrenergic receptors after isopro-terenol-induced “down”-regulation. Circ Res 55:524–531.PubMedGoogle Scholar
  14. 14.
    Tse J, Powell JR, Baste CA, Priest RE, Kuo JF (1979) Isoproterenol-induced cardiac hypertrophy: modifications in characteristics of beta-adrenergic receptors, adenylate-cyclase, and ventricular contraction. Endocrinology 105:246–255.PubMedCrossRefGoogle Scholar
  15. 15.
    Rona G (1985) Catecholamine cardiotoxicity. J Mol Cell Cardiol 17:291–306.PubMedCrossRefGoogle Scholar
  16. 16.
    Hjalmerson A, Elmford D, Herlitz J, Holmberg S, Malek I, Nyberg G, Ryden L, Svedberg K, Vedin A, Waagstein F, Waldenstroem A, Waldenstroem J, Wedel H, Wilhelmsson L, Wilhelmsson C (1981) Effect on mortality of metoprolol in acute myocardial infarction. Lancet 2:823–827.CrossRefGoogle Scholar
  17. 17.
    Beta-Blocker heart attack trial reseach group (1982) A randomized trial of Propranolol in patients with acute myocardial infarction. I. Mortality results. JAMA 247:1707–1714.CrossRefGoogle Scholar
  18. 18.
    Pentecost BL, Austen WG (1966) Beta-adrenergic blockade in experimental myocardial infarction. Am Heart J 72:790–796.PubMedCrossRefGoogle Scholar
  19. 19.
    Khan M, Hamilton JT, Manning GW (1973) Early arrhythmias following experimental coronary occlusion in conscious dogs and their modification by beta-blocking drugs. Am Heart J 86:347–358.PubMedCrossRefGoogle Scholar
  20. 20.
    Sethi V, Haider B, Ahmed SS, Oldewiertel HA, Regan TJ (1973) Influence of beta-blockade and chemical sympathectomy on myocardial function and arrhythmias in acute ischemia. Cardiovasc Res 7:740–747.PubMedCrossRefGoogle Scholar
  21. 21.
    Menken U, Wiegand V, Bucher P, Messman W (1979) Prophylaxis of ventricular fibrillation after acute experimental coronary occlusion by chronic beta-blockade with atenolol. Cardiovasc Res 13:588–594.PubMedCrossRefGoogle Scholar
  22. 22.
    Corr PB, Witkowski FX, Sobel BE (1978) Mechanisms contributing to malignant dysrhythmias induced by ischemia in the cat. J Clin Invest 61:109–119.PubMedCrossRefGoogle Scholar
  23. 23.
    Penny WJ (1984) The deleterious effects of myocardial catecholamines on cellular electrophysiology and arrhythmias during ischemia and reperfusion. Eur Heart J 5:960–973.PubMedGoogle Scholar
  24. 24.
    Puddu P, Jouve R, Langlet F, Guillen JC, Fornaris M, Torresani J, Reale A (1986) Prevention of postischemic ventricular fibrillation by long term beta adrenoceptor blockade with acebutolol in the anaesthetised dog. Cardiovasc Res 20:721–726.PubMedCrossRefGoogle Scholar
  25. 25.
    Nokin P, Clinet M, Schoenfeld P (1983) Pharmacological prevention of the increase in betaadrenergic receptor number in dog ischemic myocardium. Arch Int Physiol Biochim 91:B110–B111.Google Scholar
  26. 26.
    Podzuweit T, Darby AJ, Cherry GW, Opie LH (1978) Cyclic AMP levels in ischemic and non-ischemic myocardium following coronary artery ligation: relation to ventricular fibrillation. J Mol Cell Cardiol 10:81–94.PubMedCrossRefGoogle Scholar
  27. 27.
    Sibley DR, Lefkowitz RJ (1987) Beta-adrenergic receptor-coupled adenylate cyclase. Mol Neurobiol 1:121–154.PubMedCrossRefGoogle Scholar
  28. 28.
    Mukherjee A, Bush LR, Mckoy KE, Duke RJ, Hagler H, Buja ML, Willerson JT (1982) Relationship between beta-adrenergic receptor numbers and physiological responses during experimental canine myocardial ischemia. Circ Res 50:735–741.PubMedGoogle Scholar
  29. 29.
    Mukherjee A, Wong TL, Buja M, Lefkowitz RJ (1979) Beta adrenergic and muscarinic cholinergic receptors in canine myocardium. J Clin Invest 64:1423–1428.PubMedCrossRefGoogle Scholar
  30. 30.
    Devos C, Robberecht P, Nokin P, Waelbroeck M, Clinet M, Camus JC, Beaufort P, Schoenfeld P, Christophie J (1985) Uncoupling between beta-adrenoceptors and adenylate cyclase in dog ischemic myocardium. Naunyn Schmiedebergs Arch Pharmacol 331:71–75.PubMedCrossRefGoogle Scholar
  31. 31.
    Maisel AS, Motulsky HJ, Insel PA (1985) Externalization of beta-adrenergic receptors promoted by myocardial ischemia. Science 230:183–186.PubMedCrossRefGoogle Scholar
  32. 32.
    Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56:615–649.PubMedCrossRefGoogle Scholar
  33. 33.
    Seamon KB, Daly JE (1981) Forskolin: a unique diterpene activator of cyclic AMP-gener-ating systems. J Cyclic Nucleotide Res 7:201–224.PubMedGoogle Scholar
  34. 34.
    Seamon KB, Padgett W, Daly JW (1981) Forskolin: unique diterpene activator of adenylate cyclase in membranes and intact cells. Proc Natl Acacl Sci USA 78:3363–3367.CrossRefGoogle Scholar
  35. 35.
    Dominiak P, Tuerck D (1986) Alterations of beta-adrenoceptors subsequent to myocardial infarction. Basic Res Cardiol 81:243–251.PubMedCrossRefGoogle Scholar
  36. 36.
    Mori K (1976) Studies on adenyl cyclase system in myocardium (part II): adenyl cyclase system in myocardial infarction of dogs. Nagoya J Med Sci 39:9–14.Google Scholar
  37. 37.
    Vatner DE, Knight DR, Shen YT, Thomas JXJ, Homey CJ, Vatner SF (1988) One hour of myocardial ischemia in conscious dogs increases beta-adrenergic receptors, but decreases adenylate cyclase activity. J Mol Cell Cardiol 20:75–82.PubMedCrossRefGoogle Scholar
  38. 38.
    Wollenberger A, Krause EG, Heier G (1969) Stimulation of 3′5′-cyclid AMP formation in dog myocardium following arrest of blood flow. Biochem Biophys Res Commun 36:664–670.PubMedCrossRefGoogle Scholar
  39. 39.
    Dobson JG, Mayer SE (1973) Mechanisms of activation of cardiac glycogen Phosphorylase in ischemia and anoxia. Circ Res 33:412–420.PubMedGoogle Scholar
  40. 40.
    Podzuweit T, Dalby AJ, Cherry GW, Opie HL (1978) Cyclic AMP levels in ischaemic and non-ischaemic myocardium following coronary artery ligation: relation to ventricular fibrillation. J Mol Cell Cardiol 10:81–94.PubMedCrossRefGoogle Scholar
  41. 41.
    Drummond RW, Sordahl LA (1981) Temporal changes in adenylate cyclase activity in acutely ischemic dog heart: evidence of functional subunit damage. J Mol Cell Cardiol 13:323–330.PubMedCrossRefGoogle Scholar
  42. 42.
    Krause EG, Wollenberger A (1980) Cyclic nucleotides in heart in acute myocardial ischemia and hypoxia. Adv Cyclic Res 12:49–61.Google Scholar
  43. 43.
    Strasser RH, Stiles GL, Lefkowitz RJ (1984) Translocation and uncoupling of the betaadrenergic receptor in rat lung after catecholamine promoted desensitization in vivo. Endocrinology 115:1392–1400.PubMedCrossRefGoogle Scholar
  44. 44.
    Strasser RH, Sibley DR, Lefkowitz RJ (1986) A novel catecholamine-activated cAMP independent pathway for beta-adrenergic receptor phosphorylation in wild type and mutant S49 lymphoma cells: mechanism of homologous desensitization of adenylate cyclase. Biochemistry 25:1371–1377.PubMedCrossRefGoogle Scholar
  45. 45.
    Benovic JL, Pike LJ, Cerione RA, Staniszewski C, Yoshimasa T, Codina J, Caron MG, Lefkowitz RJ (1985) Phosphorylation of the mammalian beta-adrenergic receptor by cyclic AMP-dependent protein kinase. J Biol Chem 260:7094–7101.PubMedGoogle Scholar
  46. 46.
    Benovic JL, Mayor FJ, Caron MG, Lefkowitz RJ (1987) Purification and characterization of the beta-adrenergic receptor kinase. J Biol Chem 262:9026–9032.PubMedGoogle Scholar
  47. 47.
    Koblika BK, MacGregor C, Daniel K, Kobilka TS, Caron MG, Lefkowitz RJ (1987) Functional activity and regulation of human beta2-adrenergic receptors expressed in Xenopus oocytes. J Biol Chem 32:15796–15802.Google Scholar
  48. 48.
    Bouvier M, Hausdorff WP, De Blasi A, O’Dowd BF, Kobilka BK, Caron MG, Lefkowitz RJ (1988) Removal of phosphorylation sites from the β2-adrenergic receptors delays onset of agonist-promoted desensitization. Nature 333:370–373.PubMedCrossRefGoogle Scholar
  49. 49.
    Kuehn H, Hall SW, Wilden U (1984) Light-induced binding of 48-KDa protein to photore-ceptor membranes is highly enhanced by phosphorylation of rhodopsin. FEBS Lett 176:473–478.CrossRefGoogle Scholar
  50. 50.
    Benovic JL, Kühn H, Weyand I, Codina J, Caron MG, Lefkowitz RJ (1987) Functional desensitization of the isolated β-adrenergic receptor by the receptor kinase: potential role of an analog of the retinal protein arrestin (48-kDa protein). Proc Natl Acad Sci USA 84:8879–8882.PubMedCrossRefGoogle Scholar
  51. 51.
    Hertel C, Coulter SJ, Perkins JP (1986) The involvement of cellular ATP in receptormediated internalization of epidermal growth factor and hormone-induced internalization of beta-adrenergic receptors. J Biol Chem 261:5974–5980.PubMedGoogle Scholar
  52. 52.
    Buja LM, Muntz KH, Rosenbaum T, Haghani Z, Buja DK, Sen A, Chien KR, Willerson JT (1985) Characterization of a potentially reversible increase in beta-adrenergic receptors in isolated, neonatal rat cardiac myocytes with impaired energy metabolism. Circ Res 57:640–645.PubMedGoogle Scholar
  53. 53.
    Berridge MJ (1984) Inositol trisphosphate and diacylglycerol as second messengers. Biochem J 220:345–360.PubMedGoogle Scholar
  54. 54.
    Yoshimasa T, Sibley DR, Bouvier M, Lefkowitz RJ, Caron MG (1987) Cross-talk between cellular signalling pathways suggested by phorbol-ester-induced adenylate cyclase phosphorylation. Nature 327:67–70.PubMedCrossRefGoogle Scholar
  55. 55.
    Berridge MJ (1987) Inositol triphosphate and diacylglycerol: two interacting second messengers. Annu Rev Biochem 56:159–193.PubMedCrossRefGoogle Scholar
  56. 56.
    Jennings RB, Hawkins HK, Lowe JE, Hill ML, Klotman S, Reimer KA (1978) Relation between high energy phosphate and lethal injury in myocardial ischemia in the dog. Am J Pathol 92:187–207.PubMedGoogle Scholar
  57. 57.
    Corr PB, Shayman JA, Kramer JB, Kipnis RJ (1982) Increased alpha-adrenergic receptors in ischemic cat myocardium. A potential mediator of electrophysiological derangements. J Clin Invest 67:1232–1236.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • R. H. Strasser
  • R. Marquetant
  • W. Kübler

There are no affiliations available

Personalised recommendations