Advertisement

Adrenergic System and Ventricular Arrhythmias in Acute Myocardial Ischemia: Multiple Feedback Mechanisms

  • G. Heusch
Conference paper

Abstract

Myocardial ischemia is essentially a hemodynamic situation, i.e., an inadequate blood supply to the myocardium, which is characterized by secondary consequences such as regional myocardial dysfunction, counter-regulatory reflexes, and, of course, ventricular arrhythmias. It is therefore the purpose of this presentation to focus on hemodynamic mechanisms and emphasize the multiple feedback loops between acute myocardial ischemia, sympathetic reflexes, and ventricular arrhythmias (Fig. 1).

Keywords

Ventricular Arrhythmia Myocardial Blood Flow Coronary Blood Flow Acute Myocardial Ischemia Cardiac Sympathetic Nerve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Feigl EO (1983) Coronary physiology. Physiol Rev 63:1–205.PubMedGoogle Scholar
  2. 2.
    Heusch G, Seitelberger R, Guth BD, Ross J (1986) Adrenergic mechanisms in myocardial ischemia. J Appl Cardiol 1:125–142.Google Scholar
  3. 3.
    Gould KL, Lipscomb K, Calvert C (1975) Compensatory changes of the distal coronary vascular bed during progressive coronary constriction. Circulation 51:1085–1094.PubMedGoogle Scholar
  4. 4.
    Heusch G, Deussen A (1983) The effects of cardiac sympathetic nerve stimulation on the perfusion of stenotic coronary arteries in the dog. Circ Res 53:8–15.PubMedGoogle Scholar
  5. 5.
    Seitelberger R, Guth BD, Heusch G, Lee JD, Katayama K, Ross J (1988) Intracoronary α2-adrenergic receptor blockade attenuates ischemia in conscious dogs during exercise. Circ Res 62:436–442.PubMedGoogle Scholar
  6. 6.
    Matsuzaki M, Gallagher KP, Patritti J, Tajimi T, Miller M, Kemper WS, Ross J (1984) Effects of β-blockade on regional myocardial flow and function during exercise. Am J Physiol 16:H52–H60.Google Scholar
  7. 7.
    Guth BD, Heusch G, Seitelberger R, Ross J (1987) Mechanism of beneficial effect of β-adrenergic blockade on exercise-induced myocardial ischemia in conscious dogs. Circ Res 60:738–746.PubMedGoogle Scholar
  8. 8.
    Malliani A, Schwartz PJ, Zanchetti A (1969) A sympathetic reflex elicited by experimental coronary occlusion. Am J Physiol 217:703–709.PubMedGoogle Scholar
  9. 9.
    Lombardi F, CAsalone C, Delia Bella P, Malfatto G, Pagani M, Malliani A (1984) Global versus regional myocardial ischemia: differences in cardiovascular and sympathetic responses in cats. Cardiovasc Res 18:14–23.PubMedCrossRefGoogle Scholar
  10. 10.
    Bassenge E, Münzel T (1988) Kardiale Entstehungsmechanismen des Angina pectoris-Schmerzes. Z Kardiol 77 (Suppl 5) 5–14.PubMedGoogle Scholar
  11. 11.
    Mark AL (1983) The Bezold-Jarisch reflex revisited: clinical implications of inhibitory reflexes originating in the heart. J Am Coll Cardiol 1:90–102.PubMedCrossRefGoogle Scholar
  12. 12.
    Thames MD, Klopfenstein HS, Abboud FM, Mark AL, Walker JL (1978) Preferential distribution of inhibitory cardiac receptors with vagal afferents to the inferopoterior wall of the left ventricle activated during coronary occlusion in the dog. Circ Res 43:512–519.PubMedGoogle Scholar
  13. 13.
    Webb SA, Adgey AAJ, Pantridge JF (1972) Autonomic disturbance at onset of acute myocardial infarction. Br Med J 3:89–92.PubMedCrossRefGoogle Scholar
  14. 14.
    Heusch G, Deussen A, Thämer V (1985) Cardiac sympathetic nerve activity and progressive vasoconstriction distal to coronary stenoses: feedback aggravation of myocardial ischemia. J Auton Nerv Syst 13:311–326.PubMedCrossRefGoogle Scholar
  15. 15.
    Herre JH, Wetstein F, Lin YL, Mills AS, Dae M, Thames MD (1988) Effect of transmural versus nontransmural myocardial infarction on inducibility of ventricular arrhythmias during sympathetic stimulation in dogs. J Am Coll Cardiol 11:414–421.PubMedCrossRefGoogle Scholar
  16. 16.
    Kumada T, Karliner JS, Pouleur H, Gallagher KP, Shirato K, Ross J (1979) Effects of coronary occlusion on early ventricular diastolic events in conscious dogs. Am J Physiol 237:H542–H549.PubMedGoogle Scholar
  17. 17.
    Heusch G, Guth BD, Widmann T, Peterson KL, Ross J (1987) Ischemic myocardial dysfunction assessed by temporal Fourier transform of regional myocardial wall thickening. Am Heart J 113:116–124.PubMedCrossRefGoogle Scholar
  18. 18.
    Schipke JD (1983) The occlusion of a coronary artery increases the extravascular resistance of an adjacent coronary artery. Naunyn Schmiedebergs Arch (Suppl) 322:R36.Google Scholar
  19. 19.
    Kaufmann R, Theophile U (1967) Automatie-fördernde Dehnungseffekte an Purkinje-Fäden, Papillarmuskeln und Vorhoftrabekeln von Rhesus-Affen. Pflügers Arch 297:174–189.CrossRefGoogle Scholar
  20. 20.
    Franz MR, Burkhoff D, Yue DT, Sagawa K (1989) Mechanically induced action potential changes and arrhythmia in isolated and in situ canine hearts. Cardiovasc Res 23:213–223.PubMedCrossRefGoogle Scholar
  21. 21.
    Lichtlen PR, Bethge KP, Platiel H (1980) Incidence of sudden cardiac death in relation to left ventricular anatomy and rhythm profile. Z Kardiol 69:639–648.PubMedGoogle Scholar
  22. 22.
    von Mutius S, Neumann N, Meesmann W (1988) Early changes in collateral blood flow to ischemic myocardium and their influence on bimodal vulnerability during the first 30 min of acute coronary artery occlusion in dogs. Basic Res Cardiol 83:94–106.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • G. Heusch

There are no affiliations available

Personalised recommendations