Mechanisms of Reentrant Arrhythmias

  • M. A. Allessie
  • M. J. Schalij
  • C. J. H. J. Kirchhof
  • L. Boersma
  • M. Huybers
  • J. Hollen
Conference paper


Cardiac arrhythmias are caused either by the generation of new impulses (abnormal automaticity, triggered activity), or by failure of the propagation of the depolarization wave to extinguish after having excited all cardiac fibers. This last mechanism, called “reentrant excitation”, is responsible for the majority of clinical tachyarrhythmias. A variety of excellent articles and books is available, reviewing both the experimental and clinical literature on reentry [1–7].


Reentrant Circuit Anatomic Obstacle Reentrant Arrhythmia Reentrant Loop Electrotonic Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cranefield PF, Wit A, Hoffman BF (1973) Genesis of cardiac arrhythmias. Circulation 47:190–204.PubMedGoogle Scholar
  2. 2.
    Hoffman BF, Rosen MR (1981) Cellular mechanisms for cardiac arrhythmias. Circ Res 49:1–15.PubMedGoogle Scholar
  3. 3.
    Janse MJ (1986) Reentrant rhythms. In: Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE (eds) The heart and cardiovascular system. Raven, New York.Google Scholar
  4. 4.
    Moe GK (1975) Evidence for reeentry as a mechanism for cardiac arrhythmias. Rev Physiol Biochem Pharmacol 72:56–66.Google Scholar
  5. 5.
    Pick A, Langendorf R (1979) Interpretation of complex arrhythmias. Lea and Febigel, Philadelphia.Google Scholar
  6. 6.
    Spear JF, Moore EN (1982) Mechanisms of cardiac arrhythmias. Annu Rev Physiol 44:485–497.PubMedCrossRefGoogle Scholar
  7. 7.
    Wit AL, Cranefield PF (1978) Re-entrant excitation as a cause of cardiac arrhythmias. Am J Physiol 235:H1–H17.PubMedGoogle Scholar
  8. 8.
    Mines GR (1913) On dynamic equilibrium in the heart. J Physiol 46:349–383.PubMedGoogle Scholar
  9. 9.
    Moe GK, Mendez C, Han J (1965) Aberrant AV impulse propagation in the dog heart: a study of functional bundle branch block. Circ Res 16:261–286.PubMedGoogle Scholar
  10. 10.
    Lewis T (1920) Observations upon flutter and fibrillation. Part IV. Impure flutter: theory of circus movement. Heart 7:293–331.Google Scholar
  11. 11.
    Lewis T (1925) The mechanism and graphic registration of the heart beat. Shaw and Sons, London.Google Scholar
  12. 12.
    Frame LH, Page RL, Boyden PA, Hoffman PF (1983) A right atrial incision that stabilizes reentry around the tricuspid ring in dogs (abstract). Circulation 68: III–360.Google Scholar
  13. 13.
    Frame LH, Page RL, Hoffman BF (1986) Atrial reentry around an anatomic barrier with a partially refractory excitable gap. Circ Res 58:495–511.PubMedGoogle Scholar
  14. 14.
    Frame L, Page R, Boyden P, Fenoglio JJ, Hoffman BF (1987) Circus movement in the canine atrium around the tricuspid ring during experimental atrial flutter and during reentry in vitro. Circ Res 76:1155–1175.Google Scholar
  15. 15.
    Gallagher JJ, Gilb M, Sevenson RH, Sealy WC, Kasell J, Wallace AG (1975) Wolff-Parkinson-White syndrome: the problem, evaluation and surgical correction. Circulation 51:767–785.PubMedGoogle Scholar
  16. 16.
    Allessie MA, Bonke FIM, Schopman FJG (1973) Circus movement in rabbit atrial muscle as a mechanism of tachycardia. Circ Res 32:54–62.Google Scholar
  17. 17.
    Allessie MA, Bonke FIM, Schoman FJG (1977) Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The “leading circle” concept: a new model of circus movement in cardiac tissue without the involvement of an anatomic obstacle. Circ Res 41:9–18.PubMedGoogle Scholar
  18. 18.
    Allessie MA, Bonke FIM (1984) Atrial arrhythmias: basic concepts. In: Mandel WJ (ed) Cardiac arrhythmias: their mechanism, diagnosis and management. Lippincott, Philadelphia.Google Scholar
  19. 19.
    Allessie MA, Lammers WJEP, Bonke FIM, Hollen J (1984) Intra-atrial reentry as a mechanism for atrial flutter by acetylcholine and rapid pacing in the dog. Circulation 70:123–135.PubMedCrossRefGoogle Scholar
  20. 20.
    Allessie MA, Lammers WJEP, Bonke FIM, Hollen J (1985) Experimental evaluation of Moe’s multiple wavelet hypothesis of atrial fibrillation. In: Zipes DP, Jalife J (eds) Cardiac arrhythmias. Grune and Stratton, New York, pp 265–276.Google Scholar
  21. 21.
    Rensma PL, Allessie MA, Lammers WJEP, Bonke FIM, Schalij MJ (1988) The length of the excitation wave as an index for the susceptibility to reentrant atrial arrhythmias. Circ Res 62:395–410.PubMedGoogle Scholar
  22. 22.
    Smeets JLRM, Allessie MA, Lammers WJEP, Bonke FIM, Hollen J (1986) The wavelength of the cardiac impulse and reentrant arrhythmias in isolated rabbit atrium. Circ Res 58:96–108.PubMedGoogle Scholar
  23. 23.
    Karagueuzian HS, Fenoglio JJ, Weiss MB, Wit AL (1979) Protracted ventricular tachycardia induced by premature stimulation of the canine heart after coronary artery occlusion and reperfusion. Circ Res 44:833–848.PubMedGoogle Scholar
  24. 24.
    Waldo AL, MacLean WAH, Karp RB, Kouchoukos NT, James TN (1977) Entrainment and interruption of atrial flutter with atrial pacing: studies in man following open heart surgery. Circulation 56:737–745.PubMedGoogle Scholar
  25. 25.
    Dillon S, Allessie MA, Ursell PC, Wit AL (1988) Influences of anisotropic tissue structure on reentrant circuits in the epicardial border zone of subacute canine infarcts. Circ Res 63:182–206.PubMedGoogle Scholar
  26. 26.
    Schalij MJ (1988) Anisotropic conduction and ventricular tachycardia. Thesis, University of Limburg.Google Scholar
  27. 27.
    Wit AL, Allessie MA, Bonke FIM, Lammers WJEP, Smeets J, Fenoglio JJ (1982) Electrophysiologic mapping to determine the mechanism of experimental ventricular tachycardia initiated by premature impulses. Am J Cardiol 49:166–185.PubMedCrossRefGoogle Scholar
  28. 28.
    Clerc L (1976) Directional differences of impulse spread in trabecular muscle from mammalian heart. J Physiol (Lond) 255:335–346.Google Scholar
  29. 29.
    Spach MS, Kootsey JM, Sloan JD (1982) Active modulation of electrical coupling between cardiac cells of the dog: a mechanism for transient and steady state variations in conduction velocity. Circ Res 51:347–362.PubMedGoogle Scholar
  30. 30.
    Spach MS, Miller WT, Geselowitz DB, Barr RC, Kootsey JM, Johnson EA (1981) The discontinuous nature of propagation in normal canine cardiac muscle. Circ Res 48:39–54.PubMedGoogle Scholar
  31. 31.
    Spach MS, Miller WT, Dolber PC, Kootsey M, Sommer JR, Mosher CE (1982) The functional role of structural complexities in the propagation of depolarization in the atrium of the dog. Cardiac conduction disturbances due to discontinuities of effective axial resistivity. Circ Res 50:175–191.PubMedGoogle Scholar
  32. 32.
    Schmitt FO, Erlanger J (1928) Directional differences in the conduction of the impulse through heart muscle and their possible relation to extrasystolic and flbrillatory contractions. Am J Physiol 87:326–347.Google Scholar
  33. 33.
    Myerburg RJ, Nilsson K, Befeler B, Castellanos A, Gelband H (1973) Transverse spread and longitudinal dissociation in the distal A-V conducting system. J Clin Invest 52:885–895.PubMedCrossRefGoogle Scholar
  34. 34.
    Tsuboi N, Kodama I, Toyama J, Yamada K (1985) Anisotropic conduction properties of canine ventricular muscles. Influences of high extracellular K concentration and stimulation frequency. Jpn Circ J 49:487–498.PubMedCrossRefGoogle Scholar
  35. 35.
    Van Capelle FJL (1983) Slow conduction and cardiac arrhythmias. Thesis. University of Amsterdam.Google Scholar
  36. 36.
    Frame LH, Hoffman BF (1984) Mechanisms of tachycardia. In: Surawicz B, Pratrap-Reddy C, Prystowsky EN (eds) Tachycardias. Nijhoff, The Hague.Google Scholar
  37. 37.
    Nachlas MM, Shnitka TK (1963) Macroscopical identification of early myocardial infarcts by alteration in dehydrogenase activity. Am J Pathol 4:379–405.Google Scholar
  38. 38.
    Fishbein MC, Meerbaum S, Rit J, Lando U, Kanmatsuse, Mercier JC, Corday E, Ganz W (1981) Early phase acute myocardial infarctsize quantification: validation of the triphenylt tetrazolium chloride tissue enzyme staining technique. Am Heart J 101:593–600.PubMedCrossRefGoogle Scholar
  39. 39.
    Vivaldi MT, Kloner RA, Schoen FJ (1985) Triphenyltetrazolium staining of irreversible ischemic injury following coronary artery occlusion in rats. Am J Pathol 121:522–530.PubMedGoogle Scholar
  40. 40.
    Spach MS, Dolber PC (1986) Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle. Circ Res 58:356–371.PubMedGoogle Scholar
  41. 41.
    Spach MS, Dolber PC, Heidlage JF, Kootsey JM, Johnson EA (1987) Propagating depolarization in anisotropic human and canine cardiac muscle: apparent directional differences in membrane capacitance. A simplified model for selective directional effects of modifying the sodium conductance on Vmax. tfoot, and the propagation safety factor. Circ Res 60:206–219.PubMedGoogle Scholar
  42. 42.
    Osaka T, Kodama I, Tsuboi N, Toyama J, Yamada K (1987) Effects of activation sequence and anisotropic geometry on the repolarization phase of action potential of dog ventricular muscles. Circulation 76:226–236.PubMedCrossRefGoogle Scholar
  43. 43.
    Spear JF, Michelson EL, Moore NE (1983) Cellular electrophysiologic characteristics of chronically infarcted myocardium in dogs susceptible to sustained ventricular tachyarrhythmias. J Am Coll Cardiol 1:1099–1110.PubMedCrossRefGoogle Scholar
  44. 44.
    El-Sherif N, Smith A, Evans K (1981) Canine ventricular arrhythmias in the late myocardial infarction period. 8. Epicardial mapping of reentrant circuits. Circ Res 49:255–265.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • M. A. Allessie
  • M. J. Schalij
  • C. J. H. J. Kirchhof
  • L. Boersma
  • M. Huybers
  • J. Hollen

There are no affiliations available

Personalised recommendations