Skip to main content

Reflections of the Role of Adrenergic Mechanisms in Ventricular Arrhythmias

  • Conference paper
Book cover Adrenergic System and Ventricular Arrhythmias in Myocardial Infarction
  • 62 Accesses

Abstract

Electrophysiological and pathological data presented in Chapter III of this book show that surviving myocardial cells at the margins, endothelial or epicardial surfaces of an infarcted area may be of etiological importance in the development of arrhythmias. Alterations in their rates and pathways of depolarization and repolarization and of their effective refractory periods are important factors in generating ventricular arrhythmias. In abnormal myocardium, enhanced automaticity and/or myocardial conduction abnormalities produce depolarizing selfperpetuating rapid circuits with reentry of waves of depolarization producing contractions. Waves of depolarization arising from a single (or a few) abnormal site(s) result in one or more ventricular extrasystoles. Ventricular tachycardia is a sustained rapid series of such ventricular contractions; ejection of ventricular contents maintains, to some extent, the circulation of blood. Ventricular tachycardia may degenerate into ventricular fibrillation. Indeed, it appears from the results reported by Dr. Scherlag that a short series of three to four ventricular tachycardia-like beats (triplets or quadruplets) often initiates ventricular fibrillation. In ventricular fibrillation, chaotic multifocal depolarization waves make effective ventricular contraction impossible; there is complete disruption of cardiac function, failure of ventricular ejection of blood, and sudden death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Knight DE, Baker PF (1986) Exocytosis from the vesicle viewpoint: an overview. Ann NY Acad Sci 493:504–523.

    Article  Google Scholar 

  2. Knight DE (1986) Calcium and exocytosis. Ciba Found Symp 122:250–270.

    PubMed  CAS  Google Scholar 

  3. Bönisch H, Fuchs G, Graefe KH (1986) Sodium-dependence of the saturability of carriermediated noradrenaline efflux fro noradrenergic neurons in the rat vas deferens. Naunyn-Schmiedebergs Arch Pharmacol 332:131–134.

    Article  PubMed  Google Scholar 

  4. Carlsson L, Graefe KH, Trendelenburg U (1987) Early intraneuronal mobilization an deamination of noradrenaline during global ischemia in the isolated perfused rat heart. Naunyn-Schmiedebergs Arch Pharmacol 336:508–518.

    PubMed  CAS  Google Scholar 

  5. Olasmaa M, Terenius L (1986) Neuropeptide Y receptor interaction with beta-adrenoceptor coupling to adenylate cyclase. Prog Brain Res 68:337–341.

    Article  PubMed  CAS  Google Scholar 

  6. Samet MK, Rutledge CO (1977) Antagonism of the positive chronotropic effect of norepinephrine by purine nucleosides in rat atria. J Pharmacol Exp Ther 232:106–110.

    Google Scholar 

  7. Richardt G, Waas W, Kranzhöfer R, Mayer E, Schömig A (1987) Adenosine inhibits exocytotic release of endogenous noradrenaline in rat heart: a protective mechanism in early myocardial ischemia. Circ Res 61:117–123.

    PubMed  CAS  Google Scholar 

  8. Christensen NJ, Videback J (1985) Plasma catecholamines and carbohydrate metabolism in patients with myocardial infarction. J Clin Invest 54:278–286.

    Article  Google Scholar 

  9. Karlsberg RP, Cryer PE, Roberts R (1981) Serial plasma catecholamine response early in the course of clinical acute myocardial infarction: relationship to infarct extent and mortality. Am Heart J 102:27–31.

    Article  Google Scholar 

  10. Bertel O, Buhler FR, Baitsch G, Ritz R, Burkart F (1982) Plasma adrenaline and noradrenaline in patients with acute myocardial infarction. Relationship to ventricular arrhythmias of varying severity. Chest 82:64–68.

    Article  PubMed  CAS  Google Scholar 

  11. Dart AM, Riemersma RA, Schömig A, Ungar A (1987) Metabolic requirements for release of endogenous noradrenaline during myocardial ischemia and anoxia. Br J Pharmacol 90:43–50.

    PubMed  CAS  Google Scholar 

  12. Schwartz PF, Stone HL (1980) Left stellatectomy in the prevention of ventricular fibrillation due to acute myocardial ischemia in conscious dogs with anterior myocardial infarction. Circulation 62:1256–1265.

    PubMed  CAS  Google Scholar 

  13. Dart AM, Dietz R, Hieronymus K, Kübler W, Mayer E, Schömig A, Strasser R (1984) Effects of alpha-and beta-adrenoceptor blockade on the neurally evoked overflow of endogenous noradrenaline from the rat isolated heart. Br J Pharmacol 81:475–478.

    PubMed  CAS  Google Scholar 

  14. Schömig A, Dart AM, Dietz R, Mayer E, Kübler W (1984) Release of endogenous catecholamines in the ischemic myocardium of the rat. Part A. Locally mediated release. Circ Res 55:689–701.

    PubMed  Google Scholar 

  15. Schömig A, Dart AM, Dietz R, Kübler W, Mayer E (1985) Paradoxical role of neuronal uptake for the locally mediated release of endogenous noradrenaline in the ischemic myocardium. J Cardiovasc Pharmacol 7 (Suppl 5):S40–S440.

    Article  PubMed  Google Scholar 

  16. Schömig A, Fischer S, Kurz T, Richardt G, Schömig E (1987) Nonexocytotic release of endogenous noradrenaline in the ischemic and anoxic rat heart: mechanism and metabolic requirements. Circ Res 60:194–205.

    PubMed  Google Scholar 

  17. Kübler W, Schömig A, Senges J (1985) The conduction and cardiac sympathetic systems: metabolic aspects. J Am Coll Cardiol 5 (Suppl 6):157B–161B.

    Article  PubMed  Google Scholar 

  18. Langer SZ (1966) The degeneration contraction of the nictitating membrane in the unanesthetized cat. J Pharmacol Exp Ther 151:66–72.

    PubMed  CAS  Google Scholar 

  19. Barber MJ, Mueller TM, Henry DP, Feltan SY, Zipes DP (1983) Transmural myocardial infarction in the dog produces sympathectomy in noninfarcted myocardium. Circulation 67:787–796.

    Article  PubMed  CAS  Google Scholar 

  20. Langer SZ, Trendelenburg U (1966) The onset of denervation supersensitivity. J Pharmacol Exp Ther 151:73–86.

    PubMed  CAS  Google Scholar 

  21. Kammerling JJ, Green FJ, Watanabe AM, Inoue H, Barber MJ, Henry DP, Zipes DP (1987) Denervation supersensitivity of refractoriness in noninfarcted areas apical to transmural myocardial infarction. Circulation 76:383–393.

    Article  PubMed  CAS  Google Scholar 

  22. Inoue H, Zipes DP (1987) Results of sympathetic denervation in the canine heart: supersensitivity that may be arrhythmogenic. Circulation 75:877–887.

    Article  PubMed  CAS  Google Scholar 

  23. Maisel AS, Motulsky HJ, Insel PA (1985) Externalization of β-adrenergic receptors by myocardial ischemia. Science 230:183–386.

    Article  PubMed  CAS  Google Scholar 

  24. Reuter H, Cachelin AB, DePeyer JE, Kokubun S (1983) Modulation of calcium channels in cultured cardiac cells by isoprotereol and 8-bromo-cAMP. Cold Spring Harbour Symp Quant Biol 48:193–200.

    CAS  Google Scholar 

  25. Tsien RW, Bean BP, Hess P, Lansman JB, Nilius B, Howycky MC (1986) Mechanisms of calcium channel modulation by β-adrenergic agents and dihydropyridine calcium antagonists. J Mol Cell Cardiol 18:691–710.

    Article  PubMed  CAS  Google Scholar 

  26. Curtis BM, Catterall WA (1985) Phosphorylation of the calcium antagonist receptor of the voltage sensitive calcium channel by cAMP dependent protein kinase. Proc Natl Acad Sci USA 82:2528.

    Article  PubMed  CAS  Google Scholar 

  27. Porzig H (1987) Catecholamine-induced changes in plasma membrane biochemistry and function. Med Res Rev 7:183–226.

    Article  PubMed  CAS  Google Scholar 

  28. Pieper GM, Todd GL, Wu ST, Sachany JM, Glayton FC, Eliot RS (1980) Attenuation of myocardial acidosis by propronolol during ischemic arrest and reperfusion: evidence with 31P nuclear magnetic resonance. Cardiovasc Res 14:646–653.

    Article  PubMed  CAS  Google Scholar 

  29. Isumi T, Sakai K, Akibo Y (1982) Effect of Sotalol on ischemic myocardial pH in the dog heart. Naunyn-Schmiedebergs Arch Pharmacol 318:340–343.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kopin, I.J. (1989). Reflections of the Role of Adrenergic Mechanisms in Ventricular Arrhythmias. In: Brachmann, J., Schömig, A. (eds) Adrenergic System and Ventricular Arrhythmias in Myocardial Infarction. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74317-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74317-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74319-1

  • Online ISBN: 978-3-642-74317-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics