Advertisement

Enantioselective Synthesis of Organic Compounds with Optically Active Transition Metal Catalysts and Transition Metal Compounds

  • Henri Brunner
Conference paper

Abstract

Metabolism in man, animal and plant uses optically active compounds, e.g. L-amino acids, D-sugars etc. This metabolic stereospecificity manifests itself in macroscopic chiral structures such as snail shells, in which high stereoselectivities are observed. Other examples for plants are shown in Fig. 1.

Keywords

Transition Metal Compound Enantiomer Ratio Enantioselective Hydrogenation Methyl Vinyl Ketone Nitrogen Ligand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Brunner H (1988) Synthesis 645.Google Scholar
  2. [2]
    Brunner H (1988) Top Stereochem 18: 129.CrossRefGoogle Scholar
  3. [3]
    Morrison JD (ed) (1985) Asymmetric Synthesis, vol. 5, “Chiral Catalysis”, Academic Press, Orlando.Google Scholar
  4. [4]
    Bosnich B (1986) Asymmetric Catalysis, NATO ASI Series E 103, Martinus Nijhoff Publishers, Dordrecht.Google Scholar
  5. [5]
    Nògràdi M (1987) Stereoselective Synthesis, VCH Verlagsgesellschaft, Weinheim.Google Scholar
  6. [6]
    Osborn JA, Jardine FH, Young JF, Wilkinson 6 (1966) J Chem Soc A 1711.Google Scholar
  7. [7]
    Horner L, Siegel H, Büthe H (1968) Angew Chem 80:1034; Angew Chem Int Ed Engl 7: 942.CrossRefGoogle Scholar
  8. [8]
    Knowles WS, Sabacky MJ (1968) Chem Commun 1445.Google Scholar
  9. [9]
    Kagan HB, Dang TP (1982) J Am Chem Soc 94: 6429.CrossRefGoogle Scholar
  10. [10]
    Brunner H, Pieronczyk W (1979) Angew Chem 91:655; Angew Chem Int Ed Engl 18: 620.CrossRefGoogle Scholar
  11. [11]
    Brunner H, Pieronczyk W, Schönhammer B, Streng K, Bernal I, Korp J (1981) Chem Ber 114: 1137.CrossRefGoogle Scholar
  12. [12]
    Johnson TH, Klein KC, Thomen S (1981) J Mol Catal 12: 37.CrossRefGoogle Scholar
  13. [13]
    Brunner H, Riepl G (1982) Angew Chem 94:369; Angew Chem Int Ed Engl 21:377; Angew Chem Suppl 769.Google Scholar
  14. [14]
    Brunner H, Reiter B, Riepl G (1984) Chem Ber 117: 1330.CrossRefGoogle Scholar
  15. [15]
    Brunner H, Riepl G, Weitzer H (1983) Angew Chem 95:326; Angew Chem Int Ed Engl 22:331; Angew Chem Suppl 445.Google Scholar
  16. [16]
    Brunner H, Becker R, Riepl G (1984) Organometallies 3: 1354.CrossRefGoogle Scholar
  17. [17]
    Brunner H, Kürzinger A (1988) J Organomet Chem 346: 413.CrossRefGoogle Scholar
  18. [18]
    Brunner H, Obermann U (1988) Chem Ber, in press.Google Scholar
  19. [19]
    Brunner H, Becker R, Gauder S (1986) Organometallies 5: 739.CrossRefGoogle Scholar
  20. [20]
    Brunner H, Hammer B (1984) Angew Chem 96:305; Angew Chem Int Ed Engl 23: 312.CrossRefGoogle Scholar
  21. [21]
    Barton DHR, Finet JP, Pichon C (1986) J Chem Soc, Chem Commun 65.Google Scholar
  22. [22]
    Brunner H, Obermann U, Wimmer P (1986) J Organomet Chem 316: C1.CrossRefGoogle Scholar
  23. [23]
    Brunner H, Obermann U, Wimmer P (1988) Organometallies, in press.Google Scholar
  24. [24]
    Pauson PL (1988) In: de Meijere A, tom Dieck H (eds) Organometallies in Organic Synthesis. Springer-Verlag, Berlin, 233.Google Scholar
  25. [25]
    Bladon P, Pauson PL, Brunner H, Eder R (1988) J Organomet Chem, in press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • Henri Brunner
    • 1
  1. 1.Institut für Anorganische Chemie der Universität RegensburgRegensburgGermany

Personalised recommendations