Skip to main content

Remote Functionalization of Carbon-Hydrogen and Carbon-Carbon Bonds by Bare Transition Metal Ions in the Gas Phase

  • Conference paper
Organometallics in Organic Synthesis 2

Abstract

The selective functionaIization of C-H bonds remains one of the major focuses of catalytic and organic chemistry. High selectivity is often achieved by the presence of activating groups which induce the reactivity of the neighbouring C-H bonds by, for example, polarizing the bond, thus making the hydrogen more acidic, or by generally weakening the C-H bond. The selective functionalization of hydrocarbon segments of a molecule remote from any functional group represents a great challenge. While such reactions are common to enzymes which coordinate a functional group and geometrically select a specific section of the molecule (see, for example, the enzymatic conversion of stearic to oleic acid. Scheme 1), only a few cases in solution chemistry are reported [1] where a similar principle seems to be operative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. (a) R. Breslow, Chem. Soc. Rev. 1 (1972) 553. (b) R. Breslow, Acc. Chem. Res. 13 (1980) 170. (c) U. Kerb, M. Stahnke, P. E. Schulze and R. Wiechert, Angew. Chem. 93 (1981) 89.

    Google Scholar 

  2. a) J. Möller, Angew. Chem. Int. Ed. Engl. 11 (1972) 653. (b) J. L. Beauchamp, A. E. Stevens and R. R. Corderman, Pure Appl. Chem. 51 (1979) 976. (c) I. Gregor and M. Guilhaus, Mass Spectrom. Rev. 3 (1984) 39. (d) B. S. Freiser, Talanta 32 (1985) 697. (e) J. Allison, Prog. Inorg. Chem. 34 (1986) 627. (f) P. B. Armentrout in P. Ausloos and S. G. Lias (Eds.): Structure/Reactivity and Thermo-chemistry of Ions, D. Reidel, Dordrecht, 193 (1987) 97. (g) D. P. Ridge, ibid. 193 (1987) 165. (h) J. A. Simoes and J. L. Beauchamp, Chem. Rev, in preparation, (i) More than 100 References together with a detailed discussion of the gas-phase chemistry of gaseous aIkyne/iron (I) ion complexes may be found in: C. Schulze, H. Schwarz, D. A. Peake and M. L. Gross, J. Am. Chem. Soc. 109 (1987) 2318.

    Google Scholar 

  3. Selected references: (a) A. H. Janowicz, R. A. Periana, J. M. Buchanan, C. A. Kovac, J. M. Stryker, M. J. Wax and R. 6. Bergman, Pure Appl, Chem. 56 (1984) 13- (b). M. L. Green and D. O’Hare, Pure Appl. Chem. 57 (1985) 1897. (c) R. H. Crabtree, Chem. Rev. 85 (1985) 245. (d) J. Halpern, Inorq. Chim. Acta 100 (1985) 41. (e) I. P. Rothwell, Polyhedron 4 (1985) 77. (f) W. A. G. Graham, J. Organomet. Chem. 300 (1986) 81. (g) M. Brookhart and M. L. H. Green, J. Organomet. Chem. 250 (1983) 395.

    Google Scholar 

  4. For a description of the machine and its operation see: (a) T. Weiske, Ph.D. Thesis, Technical University Berlin, D 83 (1985). b) J. K. Terlouw, T. Weiske, H. Schwarz and J. L. Holmes, Org. Mass Spectrom. 21 (1986) 665.

    Google Scholar 

  5. T. Drewello, K. Eckart, C. B. Lebrilla and H. Schwarz, Int. J. Mass Spectrom. Ion Processes 76 (1987) 21.

    Article  Google Scholar 

  6. Suggested structures are hypothetical in most cases studied in mass spectrometry. They are based on plausibility arguments using as much direct and indirect evidence available from experiments and model consideration. Nevertheless, their heuristic merits are undeniable in chemistry as long as speculations remain within acceptable limits. Similarly, the neutrals formed from the organometaIIic complexes are not structurally characterized but inferred indirectly from the mass differences between the mass-selected precursor ions and observed daughter ion. Fortunately, in many cases on energetic grounds there does not exist any doubt as to the actual structures of the neutrals (for example, Δm = 2 corresponds to H2, Δm = 16 to CH4, Δm = 28 to C2H4 etc.).

    Google Scholar 

  7. a) R. P. Cooks (Ed.): Collision Spectroscopy, Plenum Press, New York (1978). (b) K. Levsen and H. Schwarz, Mass Spectrom. Rev. 2. (1983) 77.

    Google Scholar 

  8. a) C. B. Lebrilla, C. Schulze and H. Schwarz, J. Am. Chem. Soc. 109 (1987) 98. (b) G. Czekay, T. Drewello and H. Schwarz, J. Am. Chem. Soc., submitted.

    Google Scholar 

  9. a) B. S. Larsen, D. P. Ridge, J. Am. Chem. Soc. 106 (1984) 1912. D. A. Peake, M. L. Gross, Anal. Chem. 57 (1985) 115.

    Google Scholar 

  10. (a) D. A. Peake and M. L. Gross, Organometallics 5 (1986) 1236. (b) See, however,: C. Schulze and H. Schwarz, Chimia 41 (1987) 29.

    Google Scholar 

  11. C. B. Lebrilla, T. Drewello and H. Schwarz, J. Am. Chem. Soc. 109 (1987) 5639.

    Article  CAS  Google Scholar 

  12. C. B. Lebrilla, T. DrewelLo and H. Schwarz, Int, J. Mass Spectrom. Ion Processes 79 (1987) 287

    Article  CAS  Google Scholar 

  13. (a) J.-Y. Saillard and R. Hoffmann, J. Am, Chem, Soc. 106 (1984) 2006. (b) C. B, Lebritla and W. F. Meier, Chem. Phys. Lett. 105 (1984) 183.

    Article  CAS  Google Scholar 

  14. See, for example: P. L, Watson and D. C. Roe, J. Am. Chem. Soc. 104 (1982) 6471.

    Article  CAS  Google Scholar 

  15. (a) P. B. Armentrout and J. L. Beauchamp, J. Am. Chem. Soc. 103 (1981) 784. (b) L. F. Halle, P. B. Armentrout and J. L. Beauchamp, Organometallics 1 (1982) 963. (c) R. Houriet, L. F Halle and J. L. Beauchamp, ibid. 2 (1983) 1818. (d) M. A. Tolbert and J. L. Beauchamp, ibid. 106 (1984) 8117. (e) R. Tonkyn, M. Ronan and J. C. Weishar, J. Phys. Chem. 92 (1988) 92.

    Google Scholar 

  16. T. Prüsse, C. B. Lebrilla, T. Drewello and H. Schwarz, J. Am. Chem. Soc. 110 (1988) 000.

    Google Scholar 

  17. T. Prüsse, T. Drewello, C. B. Lebrilla and H. Schwarz, J. Am. Chem. Soc., submitted.

    Google Scholar 

  18. C. B. Lebrilla, T. Drewello and H. Schwarz, Organometallics 6 (1987) 2450

    Article  CAS  Google Scholar 

  19. For typical examples, see: (a) S. Patai (Ed.): The Chemistry of Functional Groups, Wiley, New York (1970). (b) U. Schöllkopf, Pure Appl. Chem. 51 (1979) 1347.

    Google Scholar 

  20. K. Eller, C. B. Lebrilla, T. Drewello and H. Schwarz, J. Am. Chem. Soc. 110 (1988) 3068.

    Google Scholar 

  21. P. B. Armentrout, L. F. Halle and J. L. Beauchamp, J. Am. Chem. Soc. 103 (1981) 6624.

    Article  CAS  Google Scholar 

  22. C. Schulze, T. Weiske and H. Schwarz, Chimia 40 (1986) 362.

    CAS  Google Scholar 

  23. a) C. Schulze and H. Schwarz, Chi mi a 41 (1987) 202. (b) C. Schulze and H. Schwarz, J. Am. Chem. Soc. 110 (1988) 67. (c) C. Schulze, T. Weiske and H. Schwarz, Organometa11ics 7 (1988) 898. (d) C. Schulze and H, Schwarz, Chi mi a, in press.

    Google Scholar 

  24. S. Patai (Ed.): The Chemistry of Functional Groups: The Chemistry of Ketenes, Allenes and Related Compounds, Wiley. London (1980).

    Google Scholar 

  25. (a) N. Steinrück and H. Schwarz, Chimia 42 (1988) 000, (b) N. Steinrück and H. Schwarz, OrganometaIli cs, submitted.

    Google Scholar 

  26. (a) C. Wentrup: Reactive Molecules: The Neutral Reactive Intermediate in Organic Chemistry, Wiley, New York (1984). (b) W. W. Duley and D. A. Williams: Interstellar Chemistry, Academic Press, London (1984). (c) G. Winnewisser and E. Herbst, Top. Curr. Chem. 139 (1987) 119.

    Google Scholar 

  27. a) C. Wesdemiotis and F. W. McLafferty, Chem. Rev. 87 (1987) 485. (b) J. K. Terlouw arid H. Schwarz, Angew. Chem. Irrt, Ed. Engl. 26 (1987) 805. (c) J. L. Holmes, Acc. Chem. Res., submitted.

    Google Scholar 

  28. B. E. Koe I, B. E. Bent and G. A. Somorjai, Surf. Sci. 146 (1984) 211.

    Article  Google Scholar 

  29. C. B. Lebrilla, T. Drewello and H. Schwarz, Organometallics 6 (1987) 2268.

    Article  CAS  Google Scholar 

  30. J. Müller and P. Göser, J. Organomet. Chem. 12 (1968) 163.

    Article  Google Scholar 

  31. J. Müller, Angew. Chem. Int. Ed. Engl. 11 (1972) 653.

    Article  Google Scholar 

  32. T. Drewello and H. Schwarz, in preparation.

    Google Scholar 

  33. J. Müller and L. D’Or, J. Organomet. Chem. 10 (1967) 313.

    Article  Google Scholar 

  34. K. Eller, D. Sülzle and H. Schwarz, Angew. Chem., submitted.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Czekay, G. et al. (1989). Remote Functionalization of Carbon-Hydrogen and Carbon-Carbon Bonds by Bare Transition Metal Ions in the Gas Phase. In: Werner, H., Erker, G. (eds) Organometallics in Organic Synthesis 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74269-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74269-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-50531-0

  • Online ISBN: 978-3-642-74269-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics