Skip to main content

Hepatobiliary Cysteinyl Leukotriene Elimination

  • Conference paper
Hepatic Transport of Organic Substances

Part of the book series: Proceedings in Life Sciences ((LIFE SCIENCES))

Abstract

The cysteinyl leukotrienes, LTC4, LTD4, LTE4, and N-acetyl-LTE4, are highly potent lipid mediators which are derived from arachidonate (Lewis and Austen, 1984; Hammarström et al., 1985; Piper and Samhoun, 1987; Samuelsson et al., 1987). 5-Lipoxygenase/LTA4 synthase (Dixon et al., 1988; Matsumoto et al., 1988) converts arachidonate to the epoxide LTA4 which is subsequently conjugated with glutathione by a particulate LTC4 synthase (Söderström et al., 1988; Yoshimoto et al., 1988). LTC4 is metabolized to LTD4, LTE4, and N-acetyl-LTE4 (Fig. 1). Predominant cellular sources of LTC4 are eosinophils, mast cells, macrophages, and monocytes (Weller et al., 1983; Lewis and Austen, 1984; Williams et al., 1984). The cysteinyl leukotrienes are potent smooth muscle constrictors involved in inflammatory and anaphylactic reactions, in the release of luteinizing hormone, and in cell proliferation (Lewis and Austen, 1984; Baud et al., 1985; Hammarstrom et al., 1985; Kragballe et al., 1985; Piper and Samhoun, 1987; Samuelsson et al., 1987). Their effects are mediated through well-defined receptors on the cell surface (Mong et al., 1988; Winkler et al., 1988). In human isolated bronchi and lung parenchyma LTE4 is less potent than either LTC4 or LTD4 (Piper and Samhoun, 1987). Although 25-fold less active than LTD4 in the guinea-pig pulmonary parenchymal strip (Lewis et al., 1981), N-acetyl-LTE4 is still a potent constrictor of rat mesenteric vessels (Siren et al., 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ball HA, Keppler D (1987) co-Oxidation products of leukotriene E4 in bile and urine of the monkey. Biochem Biophys Res Commun 148: 664–670

    Google Scholar 

  • Baud L, Sraer J, Perez J, Nivez M-P, Ardaillou R (1985) Leukotriene C4 binds to human glomerular epithelial cells and promotes their proliferation in vitro. J Clin Invest 76: 374–377

    Article  PubMed  CAS  Google Scholar 

  • Denzlinger C, Rapp S, Hagmann W, Keppler D (1985) Leukotrienes as mediators in tissue trauma. Science 230: 330–332

    Article  PubMed  CAS  Google Scholar 

  • Denzlinger C, Guhlmann A, Scheuber PH, Wilker D, Hammer DK, Keppler D (1986) Metabolism and analysis of cysteinyl leukotrienes in the monkey. J Biol Chem 261: 15601–15606

    PubMed  CAS  Google Scholar 

  • Dixon RAF, Jones RE, Diehl RE, Bennett CD, Kargman S, Rouzer CA (1988) Cloning of the cDNA for human 5-lipoxygenase. Proc Natl Acad Sci USA 85: 416–420

    Article  PubMed  CAS  Google Scholar 

  • Foster A, Fitzsimmons B, Rokach J, Letts G (1987) Evidence of in-vivo ω-oxidation of peptide leukotrienes in the rat: biliary excretion of 20-C02H N-acetyl LTE4. Biochem Biophys Res Canmun 148: 1237–1245

    Article  CAS  Google Scholar 

  • Guhlmann A, Hagmann W, Keppler D (1987) Enterohepatic circulation of N-aeetyl-leukotriene E4. Prostaglandins 34: 63–70

    Article  PubMed  CAS  Google Scholar 

  • Hagmann W, Denzlinger C, Keppler D (1984) Role of peptide leukotrienes and their hepatobiliary elimination in endotoxin action. Circ Shock 14: 223–235

    PubMed  CAS  Google Scholar 

  • Hagmann W, Denzlinger C, Keppler D (1985) Production of peptide leukotrienes in endotoxin shock. FEBS Lett 180: 309–313

    Article  PubMed  CAS  Google Scholar 

  • Hagmann W, Denzlinger C, Rapp S, Weckbecker G, Keppler D (1986) Identification of the major endogenous leukotriene metabolite in the bile of rats as N-acetyl leukotriene E4. Prostaglandins 31: 239–251

    Article  PubMed  CAS  Google Scholar 

  • Hamann W, Steffan A-M, Kirn A, Keppler D (1987) Leukotrienes as mediators in frog virus 3-induced hepatitis in rats. Hepatology 7: 732–736

    Article  Google Scholar 

  • Hammarström S, Örning L, Bernström K (1985) Metabolism of leukotrienes. Mol Cell Biochem 69: 7–16

    Article  PubMed  Google Scholar 

  • Huber M, Guhlmann A, Jansen PDM, Keppler D (1987a) Hereditary defect of s hepatobiliary cysteinyl leukotriene elimination in mutant rats with defective hepatic anion excretion. Hepatology 7: 224–228

    Article  PubMed  CAS  Google Scholar 

  • Huber M, Kästner S, Schölmerich J, Keppler D (1987b) Enhanced urinary excretion of cysteinyl leukotrienes in patients with hepatorenal syndrome. J. Hepatol 5 Suppl 1: S34

    Google Scholar 

  • Huber M, Keppler D (1987) Inhibition of leukotriene D4 catabolism by D-penicillamine. Eur J Biochem 167: 73–79

    Article  PubMed  CAS  Google Scholar 

  • Huber M, Beutler Br Keppler D (1988) Tumor necrosis factor-α stimulates leukotriene production in vivo. Submitted 1988 Huber M, Keppler D (1988)

    Google Scholar 

  • Leukotrienes and the mereapturate pathway. In: Sies H, Ketterer B (eds) Glutathione conjugation: its mechanism and biological significance. Academic Press, London, pp 449–470

    Google Scholar 

  • Jansen PLM, Peters WH, Lamers WH (1985) Hereditary chronic conjugated hyperbilirubinemia in mutant rats caused by defective hepatic anion transport. Hepatology 5: 573–579

    Article  PubMed  CAS  Google Scholar 

  • Jansen PLM, Groothuis GMM, Peters WHM, Meijer DFM (1987) Selective hepatobiliary transport defect for organic anions and neutral steroids in mutant rats with hereditary-conjugated hyperbilirubinemia. Hepatology 7: 71–76

    Article  PubMed  CAS  Google Scholar 

  • Keppler A, Örning L, Bernström K, Hammarström S (1987) Endogenous leukotriene D4 formation during anaphylactic shock in the guinea pig. Proc Natl Acad Sci USA 84: 5903–5907

    Article  PubMed  CAS  Google Scholar 

  • Keppler D, Hagmann W, Rapp S, Denzlinger C, Koch HK (1985) The relation of leukotrienes to liver injury. Hepatology 5: 883–891

    Article  PubMed  CAS  Google Scholar 

  • Keppler D, Huber M, Weckbecker G, Hagmann W, Denzlinger Cf Guhlmann A (1987) Leukotriene C4 metabolism by hepatoma cells and liver. Adv Enzyme Regul 26: 211–224

    Article  PubMed  CAS  Google Scholar 

  • Keppler D, Huber M, Hagmann VI, Ball HA, Guhlmann A, Kästner S (1988) Metabolism and analysis of endogenous cysteinyl leukotrienes. Ann NY Ac sä Sci 524: 68–74

    Article  CAS  Google Scholar 

  • Kragballe K, Desjarlais L, Voorhees JJ (1985) Leukotrienes 64, C4 and D4 stimulate DNA synthesis in cultured human epidermal keratinocytes. Br J Derm 113: 43–52

    Article  CAS  Google Scholar 

  • Lewis RA, Drazen JM, Austen KF, Toda M, Brion F, Marfat A, Corey EJ (1981) Contractile activities of structural analogs of leukotrienes C and D: role of the polar substituents. Proc Natl Acaä Sci USA 78: 4579–4583

    Article  CAS  Google Scholar 

  • Lewis RA, Austen KF (1984) The biologically active leukotrienes. Biosynthesis, metabolism, receptors, functions, and pharmacology. J Clin Invest 73: 889–897

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto T, Funk CD, Radmark O, Höög J-O, Jörnvall H, Samuelsson B (1988) Molecular cloning and anino acid sequence of human 5-lipoxygenase. Proc Natl Acad Sci USA 85: 26–30

    Article  PubMed  CAS  Google Scholar 

  • Mayer D, Schafer B (1982) Biochemical and morphological characterization of glycogen-storing epithelial liver cell lines. Exp Cell Res 138: 1–14

    Article  PubMed  CAS  Google Scholar 

  • Mong S, Miller J, Wu H-L, Crooke ST (1988) Leukotriene D4 receptor-mediated hydrolysis of phosphoinositide and mobilization of calcium in sheep tracheal smooth muscle cells. J Pharmacol Exp Ther 244: 508–515

    PubMed  CAS  Google Scholar 

  • Örning L (1987a) ω-Hydroxyl at ion of N-acetylleukotriene E4 by rat liver microsomes. Biochem Biophys Res Commun 143:337–344

    Google Scholar 

  • Örning L (1987b) ω-Oxidation of cysteine-containing leukotr ienes by rat- liver microsomes. Isolation and charcterization of -hydroxy and a>-carboxy metabolites of leukotriene E4 and N-acetylleukotriene E4. Eur J Biochem 170: 77–85

    Google Scholar 

  • Örning L, Norin E, Gustafsson B, Hanmarstrom S (1986) In vivo metabolism of leukotriene C4 in germ-free and conventional rats. Fecal excretion of N-acetylleukotriene E4. J Biol Chem 261: 766–771

    PubMed  Google Scholar 

  • Piper PJ, Sanhoun MN (1987) Leukotrienes. Br Med Bull 43: 297–311

    PubMed  CAS  Google Scholar 

  • Samuelsson B, Dahlén S-E, Lindgren Å,Rouzer CA, Serhan CN (1987) Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science 237: 1171–1176

    Article  PubMed  CAS  Google Scholar 

  • Siren A-L, Letts G, Feuerstein G (1988) N-Acetyl-leukotriene E4 is a potent constrictor of rat mesenteric vessels. Eur J Pharmacol 146: 331–335

    Article  PubMed  CAS  Google Scholar 

  • Soderstrom M, Hammarstrom S, Mannervik B (1988) Leukotriene C synthase in mouse mastocytoma cells. An enzyme distinct from cytosolic and microso¬mal glutathione transferases. Biochem J 250: 713–718

    PubMed  CAS  Google Scholar 

  • Stene DO, Murphy RC (1988) Metabolism of leukotriene E4 in isolated rat hepatocytes. Identification of 6-oxidation products of sulfidopeptide leukotrienes. J Biol Chem 263: 2773–2778

    PubMed  CAS  Google Scholar 

  • Uehara N, Ormstad K, Orning L, Hammarstrom S (1983) Characteristics of the uptake of cysteine-containing leukotrienes by isolated hepatocytes. Biochim Biophys Acta 732: 69–74

    Article  PubMed  CAS  Google Scholar 

  • Weckbecker G, Keppler D (1986) Leukotriene C4 metabolism by hepatoma cells deficient in the uptake of cystein leukotrienes. Eur J Biochem 154: 559–562

    Article  PubMed  CAS  Google Scholar 

  • Weller PF, Lee CW, Foster DW, Corey EJ, Austen KF, Lewis RA (1983) Generation and metabolism of 5-lipoxygenase pathway leukotrienes by human eosinophils: predominant production of leukotriene C4. Proc Natl Aca3 Sci USA 80: 7626 - 7630

    Article  CAS  Google Scholar 

  • Williams JD, Czop JK, Austen KF (1984) Release of leukotrienes by human monocytes on stimulation of their phagocytic receptor for particulate activators. J Immunol 132: 3034–3040

    PubMed  CAS  Google Scholar 

  • Winkler JD, Mong S, Crooke ST (1988) Leukotriene D4-induced homologous desensitization of calcium mobilization in rat basophilic leukemia cells. J Pharmacol Exp Ther 244: 449–455

    PubMed  CAS  Google Scholar 

  • Yoshimoto T, Soberman RJ, Spur B, Austen KF (1988) Properties of highly purified leukotriene C4 synthase of guinea pig lung. J Clin Invest 81: 866–871

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Huber, M., Baumert, T., Guhlmann, A., Mayer, D., Keppler, D. (1989). Hepatobiliary Cysteinyl Leukotriene Elimination. In: Petzinger, E., Kinne, R.K.H., Sies, H. (eds) Hepatic Transport of Organic Substances. Proceedings in Life Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74247-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74247-7_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74249-1

  • Online ISBN: 978-3-642-74247-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics