Advertisement

Photosynthesis pp 205-224 | Cite as

Ca++ Gating of Proton Fluxes in Thylakoid Membranes: Regulation of Localised and Delocalised Energy Coupled Proton Gradients

  • Richard A. Dilley
  • Gisela G. Chiang
  • William A. Beard
Conference paper

Summary

This report gives an overview of recent developments in the study of how proton gradients are generated and utilised for energising ATP formation in spinach or pea chloroplasts. The evidence is reviewed that supports the hypothesis for there being energisation either by membrane domain-localised proton gradients or delocalised proton gradients. Delocalised H+ gradients competent to drive ATP formation form under several different conditions—all of which appear to displace Ca++ ions from binding sites in the thylakoid or on the lumen side of the membrane. A localised proton gradient coupling mode is observed when Ca++ ions are not displaced in the first place (such as by pretreatments which maintain low K+ concentrations or by not over-acidifying the thylakoids) or if Ca++ ions are added to thylakoids which were treated so as to displace Ca++ ions from thylakoid binding sites. Treatments such as 100 mM KCl incubation, over-acidifying the thylakoid by basal electron flow-dependent H+ accumulation, or those in which a lipid-soluble Ca++ chelator is added, lead to delocalised H+ gradients. Ca++ ions added to the first and third treatments listed above reverse the delocalising tendency, and maintain the localised gradient coupling mode.

Intact chloroplasts respond to such treatments in the same manner as isolated thylakoids. Therefore, we conclude that the evidence favours the hypothesis that thylakoid energy coupling proton gradients are regulated by Ca++ binding to a ‘gating structure’ so that either localised or delocalised H+ fluxes can provide the energetic H+ gradient needed to drive ATP formation.

Keywords

Thylakoid Membrane Proton Gradient Proton Flux Intact Chloroplast Flash Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ferguson, S. J. (1985) Biochim. Biophys. Acta 811, 47–95Google Scholar
  2. 2.
    Dilley, R. A., Theg, S. M., and Beard, W. A. (1987) Annual Rev. Plant Physiol. 38, 348–389CrossRefGoogle Scholar
  3. 3.
    Nagle, J. and Tristram-Nagle, S. (1983) J. Membr. Biol. 74, 1–14PubMedCrossRefGoogle Scholar
  4. 4.
    Cain, B. D. and Simoni, R. D. (1986) J. Biol Chem. 261, 10043–10050PubMedGoogle Scholar
  5. 5.
    Cox, G. B., Fimmel, A. L., Gibson, F., and Hatch, L. (1986) Biochim Biophys. Acta 849, 62–69PubMedCrossRefGoogle Scholar
  6. 6.
    Ort, D. R. Dilley, R. A., and Good, N. E. (1976) Biochim. Biophys. Acta 449, 108–124PubMedCrossRefGoogle Scholar
  7. 7.
    Harold, F. (1977) Curr. Top. Bioenerg. 6, 85–149Google Scholar
  8. 8.
    Horner, R. and Moudrianakis, E. N. (1983) J. Biol. Chem. 258, 11643–11647PubMedGoogle Scholar
  9. 9.
    Sigalat, C., Haraux, F., de Kouchkovsky, F., Hung, S. P. N., and de Kouchkovsky, Y. (1985) Biochim. Biophys. Acta 809, 403–413CrossRefGoogle Scholar
  10. 10.
    Beard, W. A. and Dilley, R. A. (1988) J. Bioenerg, Biomemb. 20, 85–106CrossRefGoogle Scholar
  11. 11.
    Beard, W. A., Chiang, G., and Dilley, R. A. (1988) J. Bioenerg. Biomemb. 20, 107–128CrossRefGoogle Scholar
  12. 12.
    Beard, W. A. and Dilley, R. A. (1988) J. Bioenerg. Biomemb. 20, 129–154CrossRefGoogle Scholar
  13. 13.
    Beard, W. A. and Dilley, R. A. (1986) FEBS Lett. 201, 57–62CrossRefGoogle Scholar
  14. 14.
    Chiang, G. and Dilley, R. A. (1987) Biochemistry 26, 4911–4916CrossRefGoogle Scholar
  15. 15.
    Beard, W. A. and Dilley, R. A. (1987) Prog. in Photosyn. Res. Vol. III, 165–168Google Scholar
  16. 16.
    Vinkler, C., Avron, M. and Boyer, P. D. (1980) J. Biol. Chem. 255, 2263–2266PubMedGoogle Scholar
  17. 17.
    Davenport, J. W. and McCarthy, R. E. (1980) Biochim. Biophys. Acta 589, 353–357CrossRefGoogle Scholar
  18. 18.
    Murakami, S. and Nobel, P. S. (1967) Plant Cell. Physiol. 8, 657–671Google Scholar
  19. 19.
    Chiang, G. and Dilley, R. A. (1988) Plant Physiol., submittedGoogle Scholar
  20. 20.
    Heldt, H. W., Sauer, F., and Rapley, L. (1971) 2nd Intern. Congr. on Photosyn., Stresa, 1346–1355Google Scholar
  21. 21.
    Nakatani, H. Y., Barber, J., and Minski, M. J. (1979) Biochim. Biophys. Acta 545, 24–35PubMedCrossRefGoogle Scholar
  22. 22.
    Nishida, K., Tamai, N., and Ryoyama, K. (1966) Plant Cell Physiol. 7, 415–428Google Scholar
  23. 23.
    Packer, L., Siegenthaler, P. A., and Nobel, P. S. (1965) Biochem. Biophys. Res. Comm. 18, 474–477PubMedCrossRefGoogle Scholar

Copyright information

© Narosa Publishing House 1989

Authors and Affiliations

  • Richard A. Dilley
    • 1
  • Gisela G. Chiang
    • 1
  • William A. Beard
    • 1
  1. 1.Department of Biological SciencesPurdue UniversityWest LafayetteUSA

Personalised recommendations