Skip to main content

Surface Segregation at Metal/III-V Compound Semiconductor Interfaces

  • Conference paper
  • 166 Accesses

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 14))

Abstract

This paper focuses on the interesting observation that semiconductor atoms segregate to the free surface for many evolving metal/semiconductor interfaces. Their presence contributes to a range of intriguing properties of interfaces and their study offers insight into complicated interface behavior. The purpose of this paper is to develop a simple model for surface segregation for evolving metal/semiconductor interfaces. The starting point for this modeling is recent theories developed to qualitatively interpret grain-boundary segregation and surface segregation on alloy systems. As we will show, our approach will yield excellent agreement when compared with the wealth of experimental information available in the literature, including our own experimental results and those of others. We focus on interfaces grown under the cleanest of conditions. We do not summarize the large device literature because devices are grown under less controlled conditions and the presence of impurities will alter the atom distribution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Xu, D.M. Hill, Zhangda Lin, and J.H. Weaver, Phys. Rev. B (submitted) Ti/GaAs(100);

    Google Scholar 

  2. F. Xu, D.M. Hill, Zhangda Lin, Steven G. Anderson, Yoram Shapira, and JH. Weaver, Phys. Rev. B (submitted) Ti/GaAs.

    Google Scholar 

  3. F. Xu, Yoram Shapira, DJM. Hill, and J.H. Weaver, Phys. Rev. B 35, 7417 (1987).

    Google Scholar 

  4. J.H. Weaver, Zhangda Lin, and F. Xu, Chapter 10 in Surface Segregation and Related Phenomena, edited by P.A. Dowben and A. Miller (CRC Press — in press).

    Google Scholar 

  5. C.M. Aldao, I.M. Vitomirov, F. Xu, and J.H. Weaver, Phys. Rev. B (submitted).

    Google Scholar 

  6. F. Xu, C.M. Aldao, I.M. Vitomirov, and J.H. Weaver, Appl. Phys. Lett, (submitted) Au/Si.

    Google Scholar 

  7. Franciosi, J.H. Weaver, D.G. O’Neill, F.A. Schmidt, O. Bisi, and C. Calandra, Phys. Rev. B 28, 7000 (1983).

    Google Scholar 

  8. J J. Joyce, M. del Giudice, M.W. Ruckman, F. Boscherini, and J.H. Weaver, J. Vac. Sci. Technol. A 5, 2019 (1987).

    Google Scholar 

  9. Zhangda Lin, F. Xu, and J.H. Weaver, Phys. Rev. B 36, 5777 (1987).

    Google Scholar 

  10. L.J. Brillson, C.F. Brucker, N.G. Stoffel, A.D. Katnani, and G. Margaritondo, Phys. Rev. Lett. 46, 838 (1981).

    Article  CAS  Google Scholar 

  11. MP. Seah, J. Catal. 57, 450 (1979).

    Article  CAS  Google Scholar 

  12. J J. Burton and E.S. Machlin, Phys. Rev. Lett. 37, 1433 (1976).

    Article  CAS  Google Scholar 

  13. NH Tsai, G.M. Pound, and F.F. Abraham, J. Catal. 50, 299 (1977).

    Article  Google Scholar 

  14. Handbook of Chemistry and Physics, 66th edition, edited by R.C. Weast (CRC, Boca Raton, Florida, 1985–1986).

    Google Scholar 

  15. J J. Joyce, C. Aldao, I. Vitomirov, and J.H. Weaver (unpublished) Ce/InP.

    Google Scholar 

  16. F. Xu, C. Aldao, Zhangda Lin, I.M. Vitomirov, and J.H. Weaver, Phys. Rev. B 36, 3495 (1987) Co/InP.

    Google Scholar 

  17. J. Nogami, T. Kendelewicz, I. Lindau, and W.E. Spicer, Phys. Rev. B 34, 669 (1986).

    Google Scholar 

  18. F. Boscherini, Yoram Shapira, C. Capasso, C.M. Aldao, and J.H. Weaver, J. Vac. Sci. Technol. B 5,1003 (1987).

    Google Scholar 

  19. N.G. Stoffel, M. Turowski, and G. Margaritondo, Phys. Rev. B 30, 3294 (1984).

    Google Scholar 

  20. N.G. Stoffel, M.K. Kelly, and G. Margaritondo, Phys. Rev. B 27, 6561 (1983);

    Google Scholar 

  21. R. Ludeke and G. Landgren, J. Vac. Sci. Technol. 19,667 (1981).

    Article  CAS  Google Scholar 

  22. M. Grioni, J.J. Joyce, and J.H. Weaver, J. Vac. Sci. Technol. A 4, 965 (1986).

    Google Scholar 

  23. P.W. Chye, I. Lindau, P. Pianetta, C.M. Garner, C.Y. Su, and W.E. Spicer, Phys. Rev. B 18, 5545 (1978);

    Google Scholar 

  24. W.G. Petro, I.A. Babalola, T. Kendelewicz, I. Lindau, and W.E. Spicer, J. Vac. Sci. Technol. A 1, 1181 (1983);

    Google Scholar 

  25. W.G. Petro, T. Kendelewicz, I. Lindau, and W.E. Spicer, Phys. Rev. B 34,7089 (1986).

    Google Scholar 

  26. J.H. Weaver, M. Grioni, J.J. Joyce, and M. del Giudice, Phys. Rev. B 31, 5290 (1985).

    Google Scholar 

  27. F. Xu, J.J. Joyce, M.W. Ruckman, H.-W. Chen, F. Boscherini, D.M. Hill, S.A. Chambers, and J.H. Weaver, Phys. Rev. B 35, 2375 (1987).

    Google Scholar 

  28. J.H. Weaver, M. Grioni, and J.J. Joyce, Phys. Rev. B 31, 5348 (1985).

    Google Scholar 

  29. J J. Joyce and J.H. Weaver, Mater. Res. Soc. Symp. Proc. 54, 359 (1986).

    Google Scholar 

  30. S.A. Chambers, F. Xu, H.W. Chen, I.M. Vitomirov, S.B. Anderson, and J.H. Weaver, Phys. Rev. B 34, 6605 (1986);

    Google Scholar 

  31. M.W. Ruckman, J.J. Joyce, and J.H. Weaver,ibid. 33, 7029 (1986).

    Google Scholar 

  32. J.R. Waldrop, S.P. Kowalczyk, and R.W. Grant, J. Vac. Sci. Technol. 21, 607 (1982).

    Article  CAS  Google Scholar 

  33. Oustry, M. Caumout, and A. Escaut, Thin Solid Films 79, 251 (1981).

    Article  CAS  Google Scholar 

  34. M. Grioni, J.J. Joyce, and J.H. Weaver, Phys. Rev. B 32, 962 (1985).

    Google Scholar 

  35. R. Ludeke and G. Landgren, Phys. Rev. B 33, 5526 (1986).

    Google Scholar 

  36. M.W. Ruckman, M. del Giudice, and J.H. Weaver, Phys. Rev. B 33,2191 (1986).

    Google Scholar 

  37. M. Grioni, J.J. Joyce, and J.H. Weaver, J. Vac. Sci. Technol. A 3,918 (1985).

    Google Scholar 

  38. J. Nogami, M.D. Williams, T. Kendelewicz, I. Lindau, and W.E. Spicer, J. Vac. Sci. Technol. A 4, 808 (1986).

    Google Scholar 

  39. T. Kendelewicz, W.G. Petro, I. Lindau, and W.E. Spicer, J. Vac. Sci. Technol. B 2, 453 (1984).

    Google Scholar 

  40. W.G. Petro, T. Kendelewicz, I.A. Babalola, I. Lindau, and W.E. Spicer, Mater. Res. Soc. Symp. Proc. 25, 329 (1984).

    Article  CAS  Google Scholar 

  41. T. Kendelewicz, M.D. Williams, W.G. Petro, I. Lindau, and W.E. Spicer, Phys. Rev. B 31, 6503 (1985).

    Google Scholar 

  42. T. Kendelewicz, W.G. Petro, I.A. Babalola, J.A. Silberman, I. Lindau, and W.E. Spicer, Phys. Rev. B 30, 5800 (1984).

    Google Scholar 

  43. Y. Shapira, L.J. Brillson, A.D. Katnani, and G. Margaritondo, Phys. Rev. B 30,4856 (1984).

    Google Scholar 

  44. F. Houzaz, J.M. Moison, M. Bensoussan, J. Vac. Sci. Technol. B 3, 756 (1985).

    Google Scholar 

  45. I.A. Babalola, W.G. Petro, T. Kendelewicz, I. Lindau, and W.E. Spicer, J. Vac. Sci. Technol. A 1,762 (1983);

    Article  Google Scholar 

  46. T. Kendelewicz, W.G. Petro, I. Lindau, and WJB. Spicer, J. Vac. Sci. Technol. B 2, 453 (1984); In their earlier paper they argued that the experimental results indicate the formation of a metallic-like In-Au alloy with In on or near the surface. In the later paper they pointed out that they did not observe any evidence of metallic In segregation. We believe that, as for other Au - ni-V-semiconductor systems, In segregates but does not appear as pure metallic-like In. Insufficient numbers of In atoms should be present to form metallic-like In-In bonds.

    Google Scholar 

  47. L.J. Brillson, CP. Brucker, A.D. Katnani, N.G. Stoffel, and G. Margaritondo, J. Vac. Sci. Technol. 19, 661 (1981).

    Article  CAS  Google Scholar 

  48. R.S. List, T. Kendelewicz, M.D. Williams, I. Lindau, and W.E. Spicer, J. Vac. Sci. Technol. A 3, 1002 (1985).

    Article  Google Scholar 

  49. T. Kendelewicz, W.G. Petro, I.A. Babalola, J.A. Silberman, I. Lindau, and W.E. Spicer, Phys. Rev. B 27, 3366 (1983);

    Google Scholar 

  50. T. Kendelewicz, G. Rossi, W.G. Petro, I.A. Babalola, I. Lindau, and W.E. Spicer, J. Vac. Sci. Technol. B 1, 564 (1983).

    Google Scholar 

  51. R.H. Williams, A. McKinley, C.J. Hughes, T.P. Humphreys, and C. Maani, J. Vac. Sci. Technol. B 2, 561 (1984).

    Google Scholar 

  52. T. Kendelewicz, M.D. Williams, W.G. Petro, I. Lindau, and W.E. Spicer, Phys. Rev. B 32, 3758 (1985).

    Google Scholar 

  53. T. Kendelewicz, W.G. Petro, I. Lindau, and W.E. Spicer, Phys. Rev. B 28, 3618 (1983);

    Google Scholar 

  54. T. Kendelewicz, W.G. Petro, I. Lindau, and W.E. Spicer J. Vac. Sci. Technol. A 2, 542 (1984);

    Google Scholar 

  55. T. Kendelewicz, R.S. List, K.A. Bertness, MJD. Williams, I. Lindau, and W.E. Spicer, J. Vac. Sci. Technol. B 4, 959 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lin, Z., Xu, F., Weaver, J.H. (1988). Surface Segregation at Metal/III-V Compound Semiconductor Interfaces. In: de Wette, F.W. (eds) Solvay Conference on Surface Science. Springer Series in Surface Sciences, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74218-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74218-7_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74220-0

  • Online ISBN: 978-3-642-74218-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics