Skip to main content

A New Model for the Cleaved Si (111)-(2x1) Surface

  • Conference paper
  • 171 Accesses

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 14))

Abstract

There is currently general agreement about the structures of Si(100) and annealed Si(111) (7×7) surfaces, but the situation for the cleaved Si(111) (2×1) surface is less satisfactory [1]. A Si crystal in the (111) orientation can be viewed as a series of tetrahedra with one bond vertical and the other three forming the base, resulting in a structure that consists of double layers of closely spaced atomic planes (d = 0.78 Å) separated from each other by the Si interatomic distance d = 2.35 Å. All of the existing models use as their basis the assumption that in cleavage, the one bond that is oriented normal to the (111) surface breaks, so that the termination is the closely-spaced-layer pair that then reconstructs to form the (2×1) surface.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a recent review of Si surfaces, see D. Haneman, Repts. Prog. Phys. 50, 1045 (1987).

    Article  CAS  Google Scholar 

  2. K. C. Pandey, Phys. Rev. Letters 47, 1913 (1981).

    Article  CAS  Google Scholar 

  3. J. A. Stroscio, R. M. Feenstra, and A. P. Fein, J. Vac. Sci. Techno!. A5, 838 (1987).

    Article  Google Scholar 

  4. J. E. Northrup and M. L. Cohen, Phys. Rev. Letters 49, 1349 (1982).

    Article  CAS  Google Scholar 

  5. I. L. F. Ray and D. J. H. Cockayne, Philos. Mag. 22, 853 (1970); D. J. H. Cockayne and A. Hons, J. Physique, Coll. CiTü, H (1979) and references therein.

    Article  CAS  Google Scholar 

  6. P. B. Hirsch, J. Physique, Coll. C6, 40, 27 (1979); A. Ourmadz, G. R. Anstis, and P. B. Hirsch, Philos. Mag. A48, 139 (1983).

    Google Scholar 

  7. P. B. Hirsch, J. Electr. Micros. 118, 3 (1980).

    CAS  Google Scholar 

  8. H. Alexander, J. C. H. Spence, D. Shindo, H. Gottschalk, and N. Long, Philos. Mag. A53, 627 (1986).

    Google Scholar 

  9. J. Hornstra, J. Phys. Chem. Solids 5, 129 (1958);

    Article  CAS  Google Scholar 

  10. J. P. Hirth and J. Lothe, Theory of Dislocations, (McGraw-Hill, New York 1968).

    Google Scholar 

  11. There are a number of measurements and calculations. For a first- principles calculation and listing of earlier work, see M. Y. Chou, M. L. Cohen, and S. G. Louie, Phys. Rev. B32 7979 (1985).

    Google Scholar 

  12. D. J. H. Cockayne, private communication; D. J. H. Cockayne, A. Hons, and J. C. H. Spence, Micron 11, Suppl. 1, 32 (1980).

    Google Scholar 

  13. P. N. Keating, Phys. Rev US, 145 637 (1966).

    Article  CAS  Google Scholar 

  14. J. A. Appelbaum and D. R. Hamann, Surface Sci. 74, 21 (1978).

    Article  CAS  Google Scholar 

  15. E. O. Kane, Phys. Rev. jm, B31 7865 (1985).

    Article  Google Scholar 

  16. For a review, see S. S. Brenner, In: Fiber Composite Materials, ASM, Metals Park (1985).

    Google Scholar 

  17. D. M. Marsh, In: Fracture of Solids, ed. by D. C. Drucker and J. J. Gilman, (Interscience, New York 1963). See also R. L. Mehan and J. A. Herzog, In: Whisker Technology, ed. by A. P. Levitt, (Wiley- Interscience, New York 1970).

    Google Scholar 

  18. This structure is similar to that obtained by arbitrarily adding adatom chains onto the ideal (111) surface, as suggested by R. Sciwatz, Surface Sci. 2, 473 (1964). To create adatoms requires thermal treatment sufficient to give atomic transport at the surface, and thus a structure involving adatoms is not directly applicable to a cleaved surface. In the present model for the cleavage process, the chains are an integral part of the structure, being the normal outermost layer.

    Google Scholar 

  19. J. J. Gilman, J. Appl. Phys. 31, 2208 (1968).

    Article  Google Scholar 

  20. L. Smit, R. M. Tromp, and J. F. van der Veen, Surface Sci. 163 315 (1985).

    Article  CAS  Google Scholar 

  21. A more extensive exposition of these concepts will be presented elsewhere. D. Haneman and M. G. Lagally, J. Vac. Sci. Techno!. A6_ (1988) (submitted).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Haneman, D., Lagally, M.G. (1988). A New Model for the Cleaved Si (111)-(2x1) Surface. In: de Wette, F.W. (eds) Solvay Conference on Surface Science. Springer Series in Surface Sciences, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74218-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74218-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74220-0

  • Online ISBN: 978-3-642-74218-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics