Skip to main content

Phase Transitions at Interfaces: Roughening, Surface Melting, and Triple Point Wetting

  • Conference paper
Book cover Solvay Conference on Surface Science

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 14))

Abstract

Roughening, surface melting, and wetting are three closely related topics of great current interest in surface science. They involve the fundamental properties of thin films, and they are important phenomena in modern interface technology. Each has a long, nearly independent scientific history reaching back to the 19th Century, and we are only now learning how closely they are related. We are finding that much of the early work is inaccurate and just plain wrong, but a portion is bearing up surprisingly well. The state of knowledge in all three fields has improved considerably in the past few years, but some of the original speculations are still being tested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Pandit, M. Schick, and M. Wortis: In Phys. Rev. B 26, 5112 (1982)

    Article  CAS  Google Scholar 

  2. J.W. Gibbs: In Collected Works, Vol. 1, Thermodynamics (Longmans, Green and Co. 1906); (Dover Reprint 1961) p. 325 footnote

    Google Scholar 

  3. P. Curie: Bull. Soc. Fr. Mineral. 8, 145 (1885)

    Google Scholar 

  4. G. Wulff: Z. Cryst. 34, 449 (1901)

    CAS  Google Scholar 

  5. M. Volmer and I. Estermann: Z. Phys. 7, 13 (1921)

    Article  CAS  Google Scholar 

  6. I.N. Stranski: Z. Phys. Chem. 136, 259 (1928)

    CAS  Google Scholar 

  7. F.C. Frank: Phil. Mag. 41, 200 (1950)

    CAS  Google Scholar 

  8. J. Frenkel: J. Phys. USSR 9, 392 (1945)

    CAS  Google Scholar 

  9. W.K. Burton and N. Cabrera: Disc. Faraday Soc. no. 5, 33, 40 (1949)

    Google Scholar 

  10. W.K. Burton, N. Cabrera, and F.C. Frank: Phil. Trans. Roy. Soc. London A 243, 299 (1951)

    Article  Google Scholar 

  11. J.D. Weeks: In Ordering in Strongly Fluctuating Condensed Matter Systems, ed. by T. Riste (D. Reidel Publ. Co. 1979)pp. 293–318

    Google Scholar 

  12. J.P. van der Eerden, P. Bennema, and T.A. Cherepanova: In Prog. Cryst. Growth & Characterization, ed. by B.R. Pamplin, Vol. 3 (Pergamon 1979)p. 219

    Google Scholar 

  13. J.D. Weeks and G.H. Gilmer: Adv. Chem. Phys. 40, 157 (1979)

    Article  CAS  Google Scholar 

  14. R.H. Swendsen: Phys. Rev. B 17, 5421 (1977)

    Article  Google Scholar 

  15. N. Quircke and G. Jacucci: Surf. Sci. 144, 92 (1984)

    Article  Google Scholar 

  16. J.Q. Broughton and G.H. Gilmer: J. Chem.Phys. 79, 5119 (1983)

    Article  CAS  Google Scholar 

  17. V. Rosato, G. Ciccotti, and V. Pontikis: Phys. Rev. B 33, I860 (1986)

    Article  Google Scholar 

  18. Reviews of recent computational results are given by Y. Saito and H. Muller-Krumbhaar (p. 223) and by K. Binder, et al. (p. 299): In Applications of the Monte Carlo Method in Statistical Physics, ed. by K. Binder (Springer-Verlag, Berlin, 1987)

    Google Scholar 

  19. C. Jayaprakash and W.F. Saarn: Phys. Rev. B 30, 3916 (1984)

    Article  CAS  Google Scholar 

  20. C. Rottman and M. Wortis: Phys. Repts. 103, 59 (1984)

    Article  CAS  Google Scholar 

  21. Pavlovska and D. Nenow: Surf. Sci. 27, 211 (1971)

    Article  CAS  Google Scholar 

  22. K.A. Jackson and C.E. Miller: J. Cryst. Growth 40, 169 (1977)

    Article  CAS  Google Scholar 

  23. H.E. Buckley: In Crystal Growth, (Wiley 1951) p. 10

    Google Scholar 

  24. B.E. Sundquist: Acta Metall. 12, 67, 585 (1964)

    Google Scholar 

  25. M. Drechsler: In Surface Mobilities on Solid Materials, ed. by V. Binh (Plenum 1983), p. 405

    Google Scholar 

  26. J.C. Heyraud and J.J. Metois: J. Cryst. Growth 50, 571 (1980); Surf. Sci. 128, 334 (1983)

    Article  CAS  Google Scholar 

  27. C. Rottman, M. Wortis, J.C. Heyraud, and J.J. Metois: Phys. Rev. Lett. 51, 1009 (1984)

    Article  Google Scholar 

  28. K.O. Keshishev, A.Ya. Pashin, and A.I. Shalnikov: Phys. Rev. 14, 155 (1984)

    Google Scholar 

  29. S. Balibar and B. Castaing: Surf. Sci. Rept. 5, 87 (1985)

    Article  CAS  Google Scholar 

  30. S.G. Lipson: Contemp. Phys. 28, 117 (1987)

    Article  CAS  Google Scholar 

  31. A. Thormy and X. Duval: J. Chim. Phys. 66, 1966 (1969); 67, 286 (1970)

    Google Scholar 

  32. J.J. Hamilton and D.L. Goodstein: Phys. Rev. B 28, 3838 (1983)

    Article  CAS  Google Scholar 

  33. D.L. Goodstein, J.J. Hamilton, M.J. Lysek, and G. Vidali: Surf. Sci. 148, 187 (1984)

    Article  CAS  Google Scholar 

  34. M. Drir and G.B. Hess: Phys. Rev. B 33, 4758 (1986)

    Article  CAS  Google Scholar 

  35. H.S. Nham, M. Drir and G.B. Hess: Phys. Rev. B 35, 3675 (1987)

    Article  CAS  Google Scholar 

  36. K. Madih: These de Doctorat, Univ. d’Aix-Marseille 1986 (unpublished)

    Google Scholar 

  37. M.J. de Oliveira and R.B. Griffiths: Surf. Sci. 71, 687 (1978)

    Article  Google Scholar 

  38. Y. Larher and F. Millot: J. de Phys. 38, C4–189 (1977)

    Google Scholar 

  39. W.F. Saam: Surf. Sci. 125, 253 (1983)

    Article  CAS  Google Scholar 

  40. Da-Ming Zhu and J.G. Dash: Phys. Rev. Lett. 57, 2959 (1986)

    Article  CAS  Google Scholar 

  41. Da-Ming Zhu and J.G. Dash: to be published

    Google Scholar 

  42. V.T. Binh, R. Uzan, and M. Drechsler: J. Phys. Lettres 39, L-385 (1978)

    Google Scholar 

  43. J. Lapujoulade, J. Perreau, and A. Kara: Surf. Sci. 129, 59 (1983)

    Article  CAS  Google Scholar 

  44. J. Villain, D. Grempel, and J. Lapujoulade: J. Phys. F: MetalPhys. 15, 809 (1985)

    Article  CAS  Google Scholar 

  45. F. Fabre, D. Gorse, B. Salanon, and J. Lapujoulade: J. Physique 48, 1017 (1987)

    Article  CAS  Google Scholar 

  46. M. den Nijs, E.K. Riedel, E.H. Conrad and T. Engel: Phys. Rev. Lett. 55, 1689 (1985); 56, 4028 (1986)(Erratum)

    Article  Google Scholar 

  47. E. Conrad, R. Aten, D. Kaufman, L. Allen, T. Engel, M. den Nijs, and E. Riedel: J. Chem. Phys. M, 1015 (1986); 85, 4756 (1986)(Erratum)

    Google Scholar 

  48. M. Faraday: In Faraday’s Diary, Vol. IV, (Bell and Sons, London 1933) pp. 79–81.

    Google Scholar 

  49. Faraday’s first public report of his work on the subject was in a lecture at the Royal Institute in 1850.

    Google Scholar 

  50. Brief reviews of Faraday’s work and Thomson’s opposition are given by W.A. Weyl: J. Colloid Sci. 6, 389 (1951) and P.V. Hobbs: In Ice Physics, (Clarendon Press 1974) Ch. 6

    Google Scholar 

  51. J. Tyndall: Proc. Roy. Soc. 9, 76 (1856)

    Google Scholar 

  52. J. Thomson: Proc. Roy. Soc. 11, 198, 473 (1861)

    Google Scholar 

  53. J.K. Roberts: In Heat and Thermodynamics, (Blackie & Son, London 1940) p. 322

    Google Scholar 

  54. F.P. Bowden and T.P. Hughes: Proc. Roy. Soc. A 172, 280 (1939)

    Article  Google Scholar 

  55. W.A. Weyl: J. Colloid Sci. 6, 389 (1951)

    Article  CAS  Google Scholar 

  56. F.A. Lindemann: Z. Physik 11, 609 (1910)

    CAS  Google Scholar 

  57. The Lindemann model is nevertheless useful as an interpolation formula linking melting temperatures to vibrational properties of similar solids. It is the basis of a phenomenological model of surface melting by L. Pietronero and E. Tosatti: Sol. State. Commun. 32, 255 (1979)

    Article  CAS  Google Scholar 

  58. The confusion may arise from the limitations of some theoretical models used to describe surface disorder, having only two possible phases. Burton, et al.[10], for example, equate the roughening transition with surface melting.

    Google Scholar 

  59. I.N. Stranski: Z. Physik 119, 22 (1942)

    Article  CAS  Google Scholar 

  60. J. Frenkel: InKinetic Theory of Liquids, (Clarendon Press 1946) pp. 425–6

    Google Scholar 

  61. J.K. Kristensen and R.M.J. Cotterill: Phil. Mag. 36, 437 (1977)

    Article  CAS  Google Scholar 

  62. T. Kuroda and R. Lacmann: J. Cryst. Growth 56, 189 (1982)

    Article  CAS  Google Scholar 

  63. D. Nenow and A. Trayanov: J. Cryst. Growth 79, 801 (1986)

    Article  Google Scholar 

  64. R. Lipowsky: Phys. Rev. Lett. 49, 1575 (1982)

    Article  CAS  Google Scholar 

  65. The inequality appears to conflict with Antonow’s rule for complete wetting (see e.g. J.S. Rowlinson and B. Widom: In Molecular Theory of Capillarity, (Oxford Univ. Press 1982) pp. 212–214). If the interface between two phases α and γ is wetted by a third phase β, then Antonow’s rule states that the condition on the interfacial coefficients is an equalityαγαßβγ. However, the rule applies only in the condition that each substance is an equilibrium phase, whereas in surface melting the wetting film is a quasi liquid layer at a temperature below the stability range of the equilibrium liquid.

    Google Scholar 

  66. J.Q. Broughton and G.H. Gilmer: Acta Met. 31, 31 (1983); J. Chem. Phys. 79, 5119 (1983)

    Article  Google Scholar 

  67. J.W.M. Frenken and J.F. van der Veen: Phys. Rev. Lett. 54, 134 (1985)

    Article  CAS  Google Scholar 

  68. I.W.M. Frenken, P.M. Maree, and J.F. van der Veen: Phys. Rev. B M, 7506 (1986)

    Google Scholar 

  69. Surface relaxation and reconstruction distort the lattice near the surface, introducing a type of disorder distinct from the liquid like melted layer. This may contribute to a slowly varying background at relatively high temperatures. Such a background is easily distinguished from the disorder caused by melting, since its temperature dependence can have no special relation to Tt.

    Google Scholar 

  70. I.E. Dzialoshinskii, E.M. Lifshitz, and L.P. Pitaevskii: Adv. in Phys. 10, 165 (1961)

    Article  Google Scholar 

  71. See e.g. N.W. Ashcroft and N.D. Mermin: InSolid State Physics, (Saunders College, Philadelphia 1976) p. 330 ff

    Google Scholar 

  72. R.E. Peierls and E.A. Stern: private communications

    Google Scholar 

  73. G. Fritsch, H. Diletti, and E. Luscher: Phil. Mag. A 50, 545 (1984)

    Article  CAS  Google Scholar 

  74. A. Aharony and B.I. Halperin: Phys. Rev. Lett. 35, 1308 (1975)

    Article  CAS  Google Scholar 

  75. G. Pfeuty and G. Toulouse: In Introduction to the Renormalization Group and Critical Phenomena, (Wiley, N.Y. 1975) Ch. 2

    Google Scholar 

  76. J. Als-Nielsen and R.J. Birgeneau: Am. J. Phys. 45, 554 (1977)

    Article  Google Scholar 

  77. R. Lipowsky: Phys. Rev. Lett. 52, 1429 (1984)

    Article  CAS  Google Scholar 

  78. D.M. Kroll, R. Lipowsky, and R.K.P. Zia: Phys. Rev. B 32, 1862 (1985)

    Article  CAS  Google Scholar 

  79. J. Krim, J.P. Coulomb, and J. Bouzidi: Phys. Rev. Lett. 58, 583 (1987)

    Article  CAS  Google Scholar 

  80. M. Bienfait: Europhys. Lett. 4, 79 (1987)

    Article  CAS  Google Scholar 

  81. J.M. Gay and J. Suzanne: private communication

    Google Scholar 

  82. A. Trayanov and E. Tosatti: Phys. Rev. Lett. 59, 2207 (1987)

    Article  CAS  Google Scholar 

  83. D.M. Zhu and J.G. Dash: Phys. Rev. Lett. 60, 432 (1988)

    Article  CAS  Google Scholar 

  84. A. Bonissent: In Interfacial Aspects of Phase Transformations, ed. by B. Mutaftschiev, (Riedel Publ. Co., Holland 1982) pp. 143–182

    Google Scholar 

  85. J.Q. Broughton and F.F. Abraham: Chem. Phys. Lett. 71, 456

    Google Scholar 

  86. A. Bonissent and F.F. Abraham: J. Chem. Phys. 74, 1306

    Google Scholar 

  87. W.A. Curtin: Phys. Rev. Lett. 59, 1228 (1987)

    Article  CAS  Google Scholar 

  88. Y. Furukawa, M. Yamamoto, and T. Kuroda: J. Cryst. Growth 82, 665 (1987)

    Article  CAS  Google Scholar 

  89. T. Young: Phil. Trans. Roy. Soc. 95, 65 (1805)

    Article  Google Scholar 

  90. R. Defay, I. Prigogine, and A. Bellemans: In Surface Tension and Adsorption, trans, by D.H. Everett (Longmans Green, London 1966)

    Google Scholar 

  91. J.S. Rowlinson and B. Widom: InMolecular Theory of Capillarity, (Oxford Univ. Press 1982)

    Google Scholar 

  92. Recent reviews on wetting are given by D.E. Sullivan and M.M. Telo da Gama: In Fluid Interfacial Phenomena, ed. by C.A. Croxton (Wiley, N.Y. 1986), and S. Dietrich: In Phase Transitions and Critical Phenomena, ed. by C. Domb and J. Lebowitz, Vol. 12 (Academic, London 1988)

    Google Scholar 

  93. J.L. Seguin, J. Suzanne, M. Bienfait, J.G. Dash, and J.A. Venables: Phys. Rev. Lett. 51, 122 (1983)

    Article  CAS  Google Scholar 

  94. M. Bienfait, J.L. Seguin, J. Suzanne, E. Lerner, J. Krim, and J.G. Dash: Phys. Rev. 29, 983 (1984)

    CAS  Google Scholar 

  95. C. Ebner, C. Rottman, and M. Wortis: Phys. Rev. 28, 4186 (1983)

    Article  CAS  Google Scholar 

  96. R.J. Muirhead, J.G. Dash, and J. Krim: Phys. Rev. B 29, 5074 (1984)

    Article  CAS  Google Scholar 

  97. D.A. Huse: Phys. Rev. B 29, 6985 (1984)

    Article  CAS  Google Scholar 

  98. F.T. Gittes and M. Schick: Phys. Rev. 30, 209 (1984)

    Article  CAS  Google Scholar 

  99. J. Krim, J.G. Dash, and J. Suzanne: Phys. Rev. Lett. 52, 640 (1984)

    Article  CAS  Google Scholar 

  100. J. Krim, Ph.D. Thesis, University of Washington, 1984 (unpublished)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dash, J.G. (1988). Phase Transitions at Interfaces: Roughening, Surface Melting, and Triple Point Wetting. In: de Wette, F.W. (eds) Solvay Conference on Surface Science. Springer Series in Surface Sciences, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74218-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74218-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74220-0

  • Online ISBN: 978-3-642-74218-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics