Synthesis and Function of Glycosylated Proteins in Saccharomyces cerevisiae

  • W. Tanner


Proteins can be covalently modified in a number of ways. The most complex and evolved modification is glycosylation. Glycoproteins occur in all eukaryotic cells (Kornfeld and Kornfeld 1985; Tanner and Lehle 1987). They are also found frequently, but not always, as constituents of cell envelopes of archaebacteria (Sumper 1987). The possibility of rare occurrence in eubacteria (Messner and Sleytr 1988) is still under debate.


Fungal Cell Sorting Signal Cell Surface Component Lipid Intermediate Intracellular Protein Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnold E, Tanner W (1982) An obligatory role of protein glycosylation in the life cycle of yeast cells. FEBS Lett 148: 49–53PubMedCrossRefGoogle Scholar
  2. Babczinski P, Tanner W (1973) Involvement of dolichol monophosphate in the formation of specific mannosyl linkages in yeast glycoproteins. Biochem Biophys Res Commun 54: 1119–1124PubMedCrossRefGoogle Scholar
  3. Baynes JW, Hsu AF, Heath EC (1973) The role of mannosyl-phosphoryl-dihydropolyisoprenol in the synthesis of mammalian glycoproteins. J Biol Chem 248: 5693–5704PubMedGoogle Scholar
  4. Behrens NH, Leloir LF (1970) Dolichol monophosphate glucose: an intermediate in glucose transfer in liver. Proc Natl Acad Sci USA 66: 153–159PubMedCrossRefGoogle Scholar
  5. Betz R, Duntze W, Manney TR (1978) Mating-factor-mediated sexual agglutination in Saccharomyces cerevisiae. FEBS Lett 4: 107–110Google Scholar
  6. Beyer TA, Sadler JE, Rearick JI, Paulson JC, Hill RL (1981) Glycosyltransferases and their use in assessing oligosaccharide structure and structure-function relationships. Adv Enzymol 52: 23–175PubMedGoogle Scholar
  7. Bretthauer RK, Wu S (1975) Synthesis of the mannosyl-O-serine(threonine)-linkage of glycoproteins from polyisoprenylphosphate mannose in yeast (Hansenula holstii). Arch Biochem Biophys 167: 151–160PubMedCrossRefGoogle Scholar
  8. Byrd JC, Tarentino AL, Maley F, Atkinson PH, Trimble RB (1982) Glycoproteins synthesis in yeast. J Biol Chem 257: 14657–14666PubMedGoogle Scholar
  9. Cohen RE, Ballou CE (1981) Mannoproteins: structure. In: Tanner W, Loewus FA (eds) Plant carbohydrates II. Encyclo Plant Physiol, N Ser, vol 13B. Springer, Berlin Heidelberg New York, pp 441–458Google Scholar
  10. Ettenhuber C (1985) Untersuchungen phasenspezifischer Stoffwechselvorgänge in synchronisierten Hefekulturen. Diplomarb, Univ RegensburgGoogle Scholar
  11. Evans PJ, Hemming FW (1973) The unambiguous characterization of dolichol phosphate mannose as a product of mannosyl transferase in pig liver endoplasmic reticulum. FEBS Lett 31: 335–338PubMedCrossRefGoogle Scholar
  12. Eylar EH (1965) On the biological role of glycoproteins. J Theor Biol 10: 89–113CrossRefGoogle Scholar
  13. Gold MH, Hahn HJ (1976) Role of mannosyl lipid intermediate in the synthesis of Neurospora crassa glycoproteins. Biochemistry 15: 1808–1814PubMedCrossRefGoogle Scholar
  14. Haselbeck A, Tanner W (1982) Dolichyl phosphate-mediated mannosyl transfer through liposomal membranes. Proc Natl Acad Sci USA 79: 1520–1524PubMedCrossRefGoogle Scholar
  15. Haselbeck A, Tanner W (1983) O-Glycosylation in Saccharomyces cerevisiae is initiated at the endoplasmic reticulum. FEBS Lett 158: 335–338PubMedCrossRefGoogle Scholar
  16. Haselbeck A, Tanner W (1984) Further evidence for dolichol phosphate-mediated glycosyl translocation through membranes. FEMS Lett 21: 305–308CrossRefGoogle Scholar
  17. Hauser K (1988) Hefe-Agglutinine: Optimierung eines Testsystems; Versuche zur Funktion der Kohlenhydratketten des α-Agglutinins; Anreicherung eines α–Agglutinins. Diplomarb, Univ RegensburgGoogle Scholar
  18. Hickman S, Shapiro LJ, Neufeld EF (1974) A recognition marker required for uptake of a lysosomal enzyme by cultured fibroblasts. Biochem Biophys Res Commun 57: 55–61PubMedCrossRefGoogle Scholar
  19. Holt GD, Hart GW (1986) The subcellular distribution of terminal N-acetylglueosamine moieties. J Biol Chem 261: 8049–8057PubMedGoogle Scholar
  20. Huffaker T, Robbins PW (1982) Temperature-sensitive yeast mutants deficient in asparagine-linked glycosylation. J Biol Chem 257: 3203–3210PubMedGoogle Scholar
  21. Johnson LM, Bankaitis VA, Emr SD (1987) Distinct sequence determinants direct intracellular sorting and modification of a yeast vacuolar protease. Cell 48: 875–885PubMedCrossRefGoogle Scholar
  22. Jung P, Tanner W (1973) Identification of the lipid intermediate in yeast mannan biosynthesis. Eur J Biochem 37: 1–6PubMedCrossRefGoogle Scholar
  23. Kaplan A, Archord DT, Sly WS (1977) Phosphohexosyl components of a lysosomal enzyme are recognized by pinocytosis receptors on human fibroplasts. Proc Natl Acad Sci USA 74: 2026–2030PubMedCrossRefGoogle Scholar
  24. Klebl F, Huffaker TC, Tanner W (1984) A temperature-sensitive N-glycosylation mutant of S. cerevisiae that behaves like a cell-cycle mutant. Exp Cell Res 150: 309–313PubMedCrossRefGoogle Scholar
  25. Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 54: 631–664PubMedCrossRefGoogle Scholar
  26. Larriba G, Elorza MV, Villanueva JR, Sentandreu R (1976) Participation of dolichol phosphoman-nose in the glycosylation of yeast wall mannoproteins at the polysomal level. FEBS Lett 71: 316–320PubMedCrossRefGoogle Scholar
  27. Lehle L (1981) Biosynthesis of mannoproteins in fungi. In: Tanner W, Loewus FA (eds) Plant carbohydrates II. Encycl Plant Physiol, N Ser, vol 13B. Springer, Berlin Heidelberg New York, pp 458–483Google Scholar
  28. Lehle L, Bause E (1984) Primary structural requirements for N- and O-glycosylation of yeast man-noproteins. Biochim Biophys Acta 799: 246–251Google Scholar
  29. Lehle L, Tanner W (1976) The specific site of tunicamycin inhibition in the formation of dolichol-bound N-acetylglucosamine derivatives. FEBS Lett 71: 167–170CrossRefGoogle Scholar
  30. Letoublon R, Got R (1974) Rôle d’un intermédiaire lipique dans le transfert du mannose à des accepteurs glycoprotéique endogènes chez Aspergillus niger. FEBS Lett 46: 214–217PubMedCrossRefGoogle Scholar
  31. Li E, Tabas I, Kornfeld S (1978) The synthesis of complex-type oligosaccharides. J Biol Chem 253: 7762–7770PubMedGoogle Scholar
  32. Lin TS, Kolattukudy PE (1976) Evidence for novel linkage in a glycoprotein involving β–hydroxyphenylalanine and β-hiydroxytyrosine. Biochem Biophys Res Commun 72: 243–250PubMedCrossRefGoogle Scholar
  33. Marshall RD (1974) The nature and metabolism of the carbohydrate-peptide linkages of glycoproteins. Biochem Soc Symp 40: 17–26PubMedGoogle Scholar
  34. Messner P, Sleytr UB (1988) Asparaginyl-rhamnose: a novel type of a protein-carbohydrate linkage in a eubacterial surface-layer glycoprotein. FEBS Lett 228: 317–320PubMedCrossRefGoogle Scholar
  35. Nakajima T, Ballou CE (1974) Characterization of the carbohydrate fragments obtained from Saccharomyces cerevisiae mannan by alkaline degradation. J Biol Chem 249: 7679–7684PubMedGoogle Scholar
  36. Nakajima T, Ballou CE (1975) Yeast manno-protein biosynthesis: solubilization and selective assay of four mannosyltransferases. Proc Natl Acad Sci USA 72: 3912–3916PubMedCrossRefGoogle Scholar
  37. Orlean P, Ammer H, Watzele M, Tanner W (1986) Synthesis of an O-glycosylated cell surface protein induced in yeast by α-factor. Proc Natl Acad Sci USA 83: 6263–6266PubMedCrossRefGoogle Scholar
  38. Parodi A J (1981) Biosynthesis mechanisms for cell envelope polysaccharides. In: Arnold WN (ed) Yeast cell envelopes: biochemistry, biophysics and ultrastructure, vol II. CRC Press, Boca Raton, pp 47–64Google Scholar
  39. Pierce M, Ballou CE (1983) Cell-cell recognition in yeast. Characterization of the sexual agglutination factors from Saccharomyces kluyveri. J Biol Chem 258: 3576–3582PubMedGoogle Scholar
  40. Robbins PW, Hubbard SC, Turco SJ, Wirth DF (1977) Proposal for a common oligosaccharide intermediate in the synthesis of membrane glycoproteins. Cell 12: 893–900PubMedCrossRefGoogle Scholar
  41. Roth J (1984) Cytochemical localization of terminal N-acetyl-D-galactosamine residues in cellular compartments of intestinal goblet cells: implications for the topology of O-glycosylation. J Cell Biol 98: 399–406PubMedCrossRefGoogle Scholar
  42. Schekman R (1985) Protein localization and membrane traffic in yeast. Annu Rev Cell Biol 1: 115–143PubMedCrossRefGoogle Scholar
  43. Schwaiger H, Hasilik A, Figura K von, Wiemken A, Tanner W (1982) Carbohydrate-free carboxypep-tidase Y is transferred into the lysosome-like vacuole. Biochem Biophys Res Commun 104: 950–956PubMedCrossRefGoogle Scholar
  44. Selvendran RR, O’Neill MA (1982) Plant glycoproteins. In: Loewus FA, Tanner W (eds) Plant carbohydrates I. Encycl Plant Physiol, N Ser, vol 13 A. Springer, Berlin Heidelberg New York, pp 515–583CrossRefGoogle Scholar
  45. Sentandreu R, Northcote DH (1969) The characterization of oligosaccharide attached to threonine and serine in mannan glycopeptides obtained from the cell wall of yeast. Carbohydr Res 10: 584–585CrossRefGoogle Scholar
  46. Sharma CB, Babczinski P, Lehle L, Tanner W (1974) The role of dolichol monophosphate in glycoprotein biosynthesis in S. cerevisiae. Eur J Biochem 46: 35–41PubMedCrossRefGoogle Scholar
  47. Snider MD, Rogers OC (1984) Transmembrane movement of oligosaccharide-lipids during glycoprotein synthesis. Cell 36: 753–761PubMedCrossRefGoogle Scholar
  48. Soliday CL, Kolattukudy PE (1979) Introduction of O-glyeosidically linked mannose into proteins via mannosyl phosphoryl dolichol by microsomes from Fusarium solani f. pisi. Arch Biochem Biophys 197: 367–378PubMedCrossRefGoogle Scholar
  49. Struck DK, Lennarz WJ (1980) The function of saccharide-lipids in synthesis of glycoproteins. In: Lennarz WJ (ed) The biochemistry of glycoproteins and proteoglycans. Plenum, New York London, pp 35–83Google Scholar
  50. Sumper M (1987) Halobacterial glycoprotein biosynthesis. Biochim Biophys Acta 906: 69–79PubMedGoogle Scholar
  51. Takahashi N, Hotta T, Ishihara H, Mori M, Tejima S, Bliguy R, Akazawa T, Endo S, Arata Y (1986) Xylose-containing common structural unit in N-linked oligosaccharides of laccase from Sycamore cells. Biochemistry 25: 388–395CrossRefGoogle Scholar
  52. Takatsuki A, Kohno K, Tamura G (1975) Inhibition of biosynthesis of polyisoprenol sugars in chick embryo microsomes by tunicamycin. Agric Biol Chem 39:2089–2091CrossRefGoogle Scholar
  53. Tanner W (1969) A lipid intermediate in mannose biosynthesis in yeast. Biochem Biophys Res Commun 35: 144–150PubMedCrossRefGoogle Scholar
  54. Tanner W, Lehle L (1987) Protein glycosylation in yeast. Biochim Biophys Acta 906: 81–99PubMedGoogle Scholar
  55. Tanner W, Jung P, Behrens NH (1971) Dolicholmonophosphates: Mannosyl acceptors in a particulate in vitro system of S. cerevisiae. FEBS Lett 16: 245–248PubMedCrossRefGoogle Scholar
  56. Terrance K, Heller P, Wu Y-S, Lipke PN (1987) Identification of glycoprotein components of a agglutinin, a cell adhesion protein from Saccharomyces cerevisiae. J Bacteriol 169: 475–482PubMedGoogle Scholar
  57. Tkacz JS, Lampen JO (1975) Tunicamycin inhibition of polyisoprenyl N-acetylglucosaminyl pyrophosphate formation in calf–liver microsomes. Biochem Biophys Res Commun 65: 248–257PubMedCrossRefGoogle Scholar
  58. Vai M, Popolo L, Alberghina L (1987) Effect of tunicamycin on cell cycle progression in budding yeast. Exp Cell Res 171: 448–459PubMedCrossRefGoogle Scholar
  59. Vails LA, Hunter CP, Rothman JH, Stevens TH (1987) Protein sorting in yeast: the localization determinant of yeast vacuolar carboxypeptidase Y resides in the propeptide. Cell 48: 887–897CrossRefGoogle Scholar
  60. Watzele M, Klis F, Tanner W (1988) Purification and characterization of the inducible a agglutinin of Saccharomyces cerevisiae. EMBO J 7: 1483–1488PubMedGoogle Scholar
  61. Yanagishima N (1984) Mating systems and sexual interactions in yeast. In: Linskens HF, Heslop-Harrion J (eds) Cellular interactions. Encycl Plant Physiol, N Ser, vol 17. Springer, Berlin Heidelberg New York, pp 403–423Google Scholar
  62. Yen PH, Ballou CE (1974) Partial characterization of the sexual agglutination factor from Hansenula wingei Y-2340 type 5 cells. Biochemistry 13: 2428–2437PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • W. Tanner
    • 1
  1. 1.Lehrstuhl für Zellbiologie und PflanzenphysiologieUniversität RegensburgRegensburgGermany

Personalised recommendations