Transduction of the Calcium Signal with Special Reference to Ca2+-Induced Conidiation in Penicillium notatum

  • D. Pitt
  • A. Kaile


Calcium acts as a second messenger within eukaryotic cells and transduces cell surface primary stimuli into intracellular events. The primary stimulus may be a hormone binding to its receptor, an electrical stimulus which induces a change in membrane potential, such as an action potential, or, perhaps, a physical stimulus such as a sperm entering an egg. Thus, neither the external stimulus, nor the manifested response is necessarily due to calcium.


Calcium Signal Phorbol Ester Neurospora Crassa Penicillium Notatum Inositol Phospholipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Babu YS, Sack JS, Greenhough TJ, Bugg CE, Means AR, Cook WJ (1985) Three-dimensional structure of calmodulin. Nature (London) 315: 37–40CrossRefGoogle Scholar
  2. Berridge MJ (1985) The molecular basis of communication within the cell. Sci Am 253: 124–134CrossRefGoogle Scholar
  3. Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature (London) 312: 315–321CrossRefGoogle Scholar
  4. Bild GS, Bhat SG, Ramados CS, Axelrod B (1978) Biosynthesis of a prostaglandin by a plant enzyme. J Biol Chem 253: 21–23PubMedGoogle Scholar
  5. Boss WF, Massel M (1985) Polyphosphoinositides present in plant tissue culture cells. Biochem Biophys Res Commun 132: 1018–1023PubMedCrossRefGoogle Scholar
  6. Bowman BJ, Borgeson CE, Bowman EJ (1987) Composition of Neurospora crassa vacuolar membranes and comparison to endoplasmic reticulum, plasma membranes, and mitochondrial mem¬branes. Exp Mycol 11: 197–205CrossRefGoogle Scholar
  7. Brennan PJ, Lösel DM (1978) Physiology of fungal lipids: selected topics. Adv Microb Physiol 17: 47–179PubMedCrossRefGoogle Scholar
  8. Brown EG, Newton RP (1981) Cyclic AMP and higher plants. Phytochemistry 20: 2453–2456CrossRefGoogle Scholar
  9. Brownlee C, Wood JW (1986) A gradient of cytoplasmic free calcium in growing rhizoid cells of Fucus serratus. Nature (London) 320: 624–626CrossRefGoogle Scholar
  10. Campbell AK (1983) Intracellular calcium: its universal rôle as regulator. Wiley, New YorkGoogle Scholar
  11. Carafoli E, Penniston JT (1985) The calcium signal. Sci Am 253: 70–116PubMedCrossRefGoogle Scholar
  12. Cheung WY (1970) Cyclic 3′,5′-nucleotide phosphodiesterase: demonstration of an activator. Biochem Biophys Res Commun 33: 533–538CrossRefGoogle Scholar
  13. Cooper LA, Edwards SW, Gadd GM (1985) Involvement of adenosine 3′: 5-cyclic monophosphate in the yeast-mycelium transition of Aureobasidium pullulans. J Gen Microbiol 131: 1589–1593Google Scholar
  14. Cox JA, Ferrax C, Demaille JG, Perez RO, Van Tuinen D, Marme D (1982) Calmodulin from Neurospora crassa, general properties and conformational changes. J Biol Chem 257: 10694–10700PubMedGoogle Scholar
  15. Dahl JS, Dahl CE (1985) Stimlulation of cell proliferation and polyphosphoinositide metabolism in Saccharomyces cerevisiae GL7 by ergosterol. Biochem Biophys Res Commun 133: 844–850PubMedCrossRefGoogle Scholar
  16. Davis TN, Urdea MS, Masiarz FR, Thorner J (1986) Isolation of the yeast calmodulin gene: calmodulin is an essential protein. Cell 47: 423–431PubMedCrossRefGoogle Scholar
  17. Denton RM, McCormack JG (1985) Physiological role of Ca2+ transport by mitochondria. Nature (London) 315: 635CrossRefGoogle Scholar
  18. Dieter P (1984) Calmodulin and calmodulin-mediated processes in plants. Plant Cell Environ 7: 371–380CrossRefGoogle Scholar
  19. Eilam Y, Lavi H, Grossowicz N (1985) Cytoplasmic Ca2+ homeostasis maintained by a vacuolar Ca2+ transport system in the yeast Saccharomyces cerevisiae. J Gen Microbiol 131: 623–629Google Scholar
  20. Elliott CG (1986) Inhibition of reproduction by Phytophthora by calmodulin-interacting compounds trifluoperazine and ophiobolin A. J Gen Microbiol 132: 2781–1785Google Scholar
  21. Favre B, Turian G (1987) Identification of a calcium- and phospholipid-dependent protein kinase (protein kinase C) in Neurospora crassa. Plant Sci 49: 15–21CrossRefGoogle Scholar
  22. Fletcher J (1979) Effect of calcium chloride concentration on growth and sporulation of Saprolegnia terrestris. Ann Bot (London) 44: 589–594Google Scholar
  23. Gilroy S, Hughfes WA, Trewavas AJ (1986) The measurement of intracellular calcium levels in protoplasts from higher plant cells. FEBS Lett 199:217–222CrossRefGoogle Scholar
  24. Mennucci L, Maia JCC (1979) A calcium-dependent protein activator of mammalian cyclic nucleotide phosphodiesterase from Blastocladiella emersonii. FEBS Lett 99: 39–42PubMedCrossRefGoogle Scholar
  25. Grand RJA, Nairn AC, Perry SV (1980) The preparation of calmodulins from barley (Hordeum sp.) and basidiomycete fungi. Biochem J 181: 755–760Google Scholar
  26. Hamlyn PF, Bradshaw RE, Mellon FM, Santiago CM, Wilson JM, Peberdy JF (1981) Efficient protoplast isolation from fungi using commercial enzymes. Enzyme Microb Technol 3: 321–325CrossRefGoogle Scholar
  27. Harold RL, Harold FM (1986) Ionophores and cytochalasins moderate branching in Achlya bisexualis. J Gen Microbiol 132: 213–219PubMedGoogle Scholar
  28. Hepler PK, Wayne RO (1985) Calcium and plant development. Annu Rev Plant Physiol 36: 397–439CrossRefGoogle Scholar
  29. Hetherington AM, Trewavas A (1984) Activation of pea membrane protein kinase by calcium ions. Planta 161: 409–417CrossRefGoogle Scholar
  30. Hetherington AM, Blowers D, Trewavas A (1986) Calcium/calmodulin dependent membrane bound protein kinase. In: Trewavas AJ (ed) Molecular and cellular aspects of calcium in plant development. NATO AS I Ser. Series A, Life Sci, vol 104. Plenum, New York London, pp 123–131Google Scholar
  31. Hirata M, Sasaguri T, Hamachi T, Hashimoto KM, Kukita M, Koga T (1985) Irreversible inhibition of Ca2+ release in saponin-treated macrophages by the photoaffinity derivative of inositol-1,4,5- trisphosphate. Nature (London) 317: 723–725CrossRefGoogle Scholar
  32. Hubbard M, Bradley M, Sullivan P, Shepherd M, Forrester I (1982) Evidence of the occurrence of calmodulin in the yeasts Candida albicans and Saccharomyces cerevisiae. FEBS Lett 317: 85–88CrossRefGoogle Scholar
  33. Janssens PMW (1987) Did vertebrate signal transduction mechanisms originate in eukaryotic microbes? Trends Biochem Sci 12: 456–459CrossRefGoogle Scholar
  34. Kauss H (1987) Some aspects of calcium–dependent regulation in plant metabolism. Annu Rev PI Physiol 78: 47–72CrossRefGoogle Scholar
  35. Keith CH, Ratan R, Maxfield FR, Bajer A, Shelanski ML (1985) Local cytoplasmic calcium gradients in living mitotic cells. Nature (London) 316: 848–850CrossRefGoogle Scholar
  36. Klebs G (1898) Zur Physiologie der Fortpflanzung einiger Pilze. Jahrb Wiss Bot 32: 1–70Google Scholar
  37. Lester RL, Steiner MR (1968) The occurrence of diphosphoinositide and triphosphoinositide in Saccharomyces cerevisiae. J Biol Chem 243: 4889–4893PubMedGoogle Scholar
  38. Leung PC, Taylor WA, Wang JH, Tipton CL (1985) Röle of calmodulin inhibition in the mode of action of ophiobolin A. Plant Physiol 77: 303–308PubMedCrossRefGoogle Scholar
  39. Londesborough J, Nuutinen M (1987) Ca2+/calmodulin–dependent protein kinase in Saccharomyces cerevisiae. FEBS Lett 219: 249–253PubMedCrossRefGoogle Scholar
  40. McCormack JG, Denton RM (1981) A comparative study of the regulation by Ca2+ of the activation of the 2-oxoglutarate dehydrogenase complex and NAD+-isocitrate dehydrogenase from a variety of sources. Biochem J 196: 619–624PubMedGoogle Scholar
  41. Means AR, Dedman JR (1980) Calmodulin — an intracellular calcium receptor. Nature (London) 285: 73–77CrossRefGoogle Scholar
  42. Meyer WL, Fischer WH, Krebs EG (1964) Activation of skeletal muscle Phosphorylase β-kinase by Ca2+. Biochemistry 3: 1033–1039PubMedCrossRefGoogle Scholar
  43. Michell RH (1975) Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta 415: 81–147PubMedGoogle Scholar
  44. Muthukumar G, Nickerson AW, Nickerson KW (1987) Calmodulin levels in yeasts and filamentous fungi. FEMS Microbiol Lett 41: 253–255CrossRefGoogle Scholar
  45. Nishikuza Y (1984) Turnover of inositol phospholipids and signal transduction. Science 225: 1365–1370CrossRefGoogle Scholar
  46. Pall ML (1981) Adenosine 3′,5′-phosphate in fungi. Microbiol Rev 45: 462–480PubMedGoogle Scholar
  47. Pitt D, Barnes JC (1987) Hexose transport during calcium induced conidiation in Penicillium notatum. Trans Br Mycol Soc 89: 859–865CrossRefGoogle Scholar
  48. Pitt D, Mosley MJ (1985 a) Enzymes of gluconate metabolism and glycolysis in Penicillium notatum. Antonie Leeuwenhoek Microbiol 51: 353–364CrossRefGoogle Scholar
  49. Pitt D, Mosley MJ (1985 b) Pathways of glucose catabolism and the origin and metabolism of pyruvate during calcium-induced conidiation of Penicillium notatum. Antonie Leeuwenhoek Microbiol 51: 365–384CrossRefGoogle Scholar
  50. Pitt D, Mosley MJ (1986) Oxidation of carbon sources via the tricarboxylic acid cycle during calcium-induced conidiation of Penicillium notatum. Antonie Leeuwenhoek Microbiol 52: 467–482CrossRefGoogle Scholar
  51. Pitt D, Poole PC (1981) Calcium–induced conidiation in Penicillium notatum in submerged culture. Trans Br Mycol Soc 76: 219–230CrossRefGoogle Scholar
  52. Pitt D, Ugalde UO (1984) Calcium in fungi. Plant Cell Environ 7: 467–475CrossRefGoogle Scholar
  53. Poovaiah BW, Reddy ASN, McFadden J J (1987) Calcium messenger system: Rôle of protein phosphorylation and inositol biphospholipids. Physiol Plant 69: 569–573PubMedCrossRefGoogle Scholar
  54. Rasmussen H, Barrett PQ (1984) Calcium messenger system: An integrated view. Physiol Rev 64: 938–984PubMedGoogle Scholar
  55. Rasmussen H, Zawalich W, Kojima J (1985) Ca2+ and cAMP in the regulation of cell function. In: Marme D (ed) Calcium and cell physiology. Springer, Berlin Heidelberg New York Tokyo, pp 3–14Google Scholar
  56. Rincon M, Boss WF (1987) myo-inositol trisphosphate mobilises calcium from fusogenic carrot ( Daucus carota L.) protoplasts. Plant Physiol 83: 395–398PubMedCrossRefGoogle Scholar
  57. Rink J, Pozzan T (1985) Using Quin 2 in cell suspensions. Cell Calcium 6: 133–144PubMedCrossRefGoogle Scholar
  58. Roufogalis BD (1982) Specificity of trifluoperazine and related phenothiazines for calcium-binding proteins. In: Cheung WY (ed) Calcium and cell function, vol 3. Academic Press, London New York, pp 130–159Google Scholar
  59. Smith JE, Berry DR (1976) The filamentous fungi. Biosynthesis and metabolism, vol 2. Arnold, LondonGoogle Scholar
  60. Trewavas A (1976) Post-translational modification of proteins by phosphorylation. Annu Rev Plant Physiol 27: 349–374CrossRefGoogle Scholar
  61. Tsien RY, Pozzan T, Rink TJ (1982) Calcium homeostasis in intact lymphocytes: Cytoplasmic free calcium monitored with a new intracellularly trapped fluorescent indicator. J Cell Biol 94: 325–334PubMedCrossRefGoogle Scholar
  62. Tyers M, Harley CB (1986) Ca2+ and phorbol ester synergistically induce HL-60 differentiation. FEBS Lett 206: 99–105PubMedCrossRefGoogle Scholar
  63. Ugalde UO, Pitt D (1983) Morphology and calcium-induced conidiation of Penicillium cyclopium in submerged culture. Trans Br Mycol Soc 80: 319–325CrossRefGoogle Scholar
  64. Ugalde UO, Pitt D (1984) Subcellular sites of calcium accumulation and relationships with conidiation in Penicillium cyclopium. Trans Br Mycol Soc 83: 547–555CrossRefGoogle Scholar
  65. Ugalde UO, Pitt D (1986) Calcium uptake kinetics in relation to conidiation in submerged cultures of Penicillium cyclopium. Trans Br Mycol Soc 87: 199–203CrossRefGoogle Scholar
  66. Veluthambi K, Poovaiah BW (1984) Calcium-promoted protein phosphorylation in plants. Science 223: 167–169PubMedCrossRefGoogle Scholar
  67. Weete JD (1974) Fungal lipid biochemistry. Plenum, New York LondonGoogle Scholar
  68. Wessels JGH (1986) Cell wall synthesis in apical growth. Int Rev Cytol 104:37–79CrossRefGoogle Scholar
  69. Williamson RE (1981) Free Ca2+ concentration in the cytoplasm: A regulator of plant cell function. Physiol Plant 12: 45–48Google Scholar
  70. Williamson RE, Ashley CC (1982) Free Ca2+ and cytoplasmic streaming in the alga Chara. Nature (London) 296: 647–651CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • D. Pitt
  • A. Kaile
    • 1
  1. 1.Department of Biological Sciences, Washington Singer LaboratoriesUniversity of ExeterExeterUK

Personalised recommendations