Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 93 / 1))

Abstract

Guanethidine and related compounds have collectively been called adrenergic blocking drugs because their major pharmacological action is to prevent the release of noradrenaline from postganglionic neurons in response to sympathetic nerve stimulations. Guanethidine has other actions on catecholamine metabolism (see Sect. 2) and can cause significant tissue depletion of catecholamines. It does not, however, interfere with release of catecholamines from the adrenal medulla and does not produce parasympathetic blockade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmad M, Achari G (1968) Anti-arrhythmic activity of guanethidine and methyldopa. J Indian Med Assoc 49: 363–368

    Google Scholar 

  • Allen JG, East PB, Francis RJ, Haigh JL (1975) Metabolism of debrisoquine sulfate. Identification of some urinary metabolites in rat and man. Drug Metab Dispos 3: 332–337

    PubMed  CAS  Google Scholar 

  • Angus JA, Bobik A, Korner PI, Stoneham MT (1978) Guanethidine induced vasodilatation in the rabbit, mediated by endogenous histamine. Br J Clin Pharmacol 62: 7–17

    CAS  Google Scholar 

  • Bacaner M (1966) Bretylium tosylate for suppression of induced ventricular fibrillation. Am J Cardiol 17: 528–534

    Article  PubMed  CAS  Google Scholar 

  • Bacaner MB (1968a) Quantitative comparison of bretylium with other antifibrillatory drugs. Am J Cardiol 21: 504–512

    Article  PubMed  CAS  Google Scholar 

  • Bacaner MB (1968b) Treatment of ventricular fibrillation and other acute arrhythmias with bretylium tosylate. Am J Cardiol 21: 530–543

    Article  PubMed  CAS  Google Scholar 

  • Bein HJ (1960) Some pharmacological properties of guanethidine. In: Wolsten-Holme GEW, O’Connor M (eds) Adrenergic mechanisms. Ciba Foundation Symposium. Little, Brown, Boston

    Google Scholar 

  • Bernstein JG, Koch-Weser J (1972) Effectiveness of bretylium tosylate against refractory ventricular arrhythmias. Circulation 45: 1024–1034

    PubMed  CAS  Google Scholar 

  • Bonomi L, Perfetti S, Bulluci R, Massa F, Gamba GC (1983) Intraocular pressure lowering effect of low dosage combination of guanethidine and terbutaline in rabbit. Graefes Arch Clin Exp Opthalmol 220: 197–199

    Article  CAS  Google Scholar 

  • Boura ALA, Green AF (1959) The actions of bretylium: adrenergic neurone blocking and other effects. Br J Pharmacol 14: 536–548

    CAS  Google Scholar 

  • Boura ALa, Green AF (1962) Comparison of bretylium and guanethidine: Tolerance and effects of adrenergic nerve function and responses to sympathomimetic amines. Br J Pharmacol 19: 13–41

    Google Scholar 

  • Boura ALA, Green AF (1963) Adrenergic neurone blockade and other acute effects caused by N-benzyl-N’N”-dimethylguanidine and its ortho-chloro deviate. Br J Pharmacol 20: 36–55

    CAS  Google Scholar 

  • Boura ALA, Green AF (1965) Adrenergic neuron blocking agents. Annu Rev Pharmacol 5: 183–212

    Article  CAS  Google Scholar 

  • Boura ALA, Copp FC, Green AF (1959) New antiadrenergic compounds. Nature 184: 70–71

    Article  PubMed  CAS  Google Scholar 

  • Boura ALA, Copp FC, Duncombe WG, Green AF, McCoubrey A (1960) The selective accumulation of bretylium in sympathetic ganglia and their postganglionic nerves. Br J Pharmacol 15: 265–270

    CAS  Google Scholar 

  • Boura ALA, Copp FC, Green AF, Hodson HF, Ruffell GK, Sim MF, Walton E, Grivsky EM (1961) Adrenergic neuron blocking agents related to choline 2,6-xylyl ether bromide (TM 10), bretylium and guanethidine. Nature 191: 1312–1313

    Article  PubMed  CAS  Google Scholar 

  • Brodie BB, Chang CC, Costa E (1965) On the mechanism of action of guanethidine and bretylium. Br J Pharmacol 25: 171–178

    CAS  Google Scholar 

  • Brown BG, Hey P (1956) Choline phenyl ethers as inhibitors of amine oxidase. Br J Pharmacol 11: 58–65

    CAS  Google Scholar 

  • Burnstock G, Doyle AE, Gannon BJ, Gerkens JF, Iwayama T, Mashford ML (1971) Prolonged hypotension and ultrastructural changes in sympathetic neurones following guanacline treatment. Eur J Pharmacol 13: 175–187

    Article  PubMed  CAS  Google Scholar 

  • Castaneda A, Bacaner M (1970) Effect of bretylium tosylate on the prevention and treatment of postoperative arrhythmias. Am J Cardiol 25: 461–466

    Article  PubMed  CAS  Google Scholar 

  • Castren JA, Pohjola S (1962) Guanethidine and aqueous humor dynamics. Acta Ophthalmol (Copenh) 40: 348–361

    Google Scholar 

  • Chamberlain DA, Howard J (1964) Guanethidine and methyldopa: a haemodynamic study. Br Heart J 26: 528–536

    Article  PubMed  CAS  Google Scholar 

  • Chang CC, Costa E, Brodie BB (1964) Reserpine-induced release of drugs from sympathetic nerve endings. Life Sei 3: 839–844

    Article  CAS  Google Scholar 

  • Cohn JN, Liptak TE, Freis ED (1963) Hemodynamic effects of guanethidine in man. Circ Res 12: 298–307

    PubMed  CAS  Google Scholar 

  • Copp FC (1964) Adrenergic neurone blocking agents. Adv Drug Res 1: 161–189

    PubMed  CAS  Google Scholar 

  • Dawborn JK, Doyle AE, Ebringer A, Howqus J, Jerums G, Johnston CI, Mashford ML, Parkins JD (1969) Persistent postural hypotension due to guanacline. Pharmacol Clin 2: 105

    Article  Google Scholar 

  • Day HW, Bacaner M (1971) Use of bretylium tosylate in the management of acute myocardial infarction. Am J Cardiol 27: 177–189

    Article  PubMed  CAS  Google Scholar 

  • Dengler HJ, Spiegel HE, Titus EO (1961) Uptake of tritium-labeled norepinephrine in brain and other tissues of cat in vitro. Science 133: 1072–1073

    Article  PubMed  CAS  Google Scholar 

  • Dollery CT, Emslie-Smith D, Milne MD (1960) Clinical and pharmacological studies with guanethidine in the treatment of hypertension. Lancet 11: 381–387

    Article  Google Scholar 

  • Dunstan HP, Tarazi R, Bravo L (1972) Dependence of arterial pressure on intravascular volume in treated hypertensive patients. N Engl J Med 286: 861–866

    Article  Google Scholar 

  • Exley KA (1957) The blocking action of choline 2:6-xylyl ether bromide on adrenergic nerves. Br J Pharmacol 12: 297–305

    CAS  Google Scholar 

  • Exley KA (1960) The persistence of adrenergic nerve conduction after TMl0 or bretylium in the cat. In: Wolsteri-Holme GEW, O’Connor M (eds) Adrenergic mechanisms. Ciba Foundation Symposium. Little, Brown, Boston

    Google Scholar 

  • Fawaz G (1963) Cardiovascular pharmacology. Annu Rev Pharmacol 3: 57–90

    Article  Google Scholar 

  • Fried G, Terenicis L, Hockfeit T, Goldstein M (1985) Evidence for differential localization of noradrenaline and neuropeptide Y ( NPY) in neuronal storage vesicles in rat vas deferens. J Neurosci 5: 450–458

    Google Scholar 

  • Glaubiger G, Tsai BS, Lefkowitz RJ, Weiss B, Johnson EM Jr (1978) Chronic guanethidine treatment increases cardiac beta-adrenergic receptors. Nature 273: 240–242

    Article  PubMed  CAS  Google Scholar 

  • Gokhale SD, Gulati OD, Kelkar W (1967) Supersensitivity to catecholamines following guanethidine. Br J Pharmacol 30: 445–462

    CAS  Google Scholar 

  • Green AF (1962) Antihypertensive drugs. Adv Pharmacol 1: 161–225

    Article  CAS  Google Scholar 

  • Hausler G, Thoenen H, Haefely W, Hurlimann A (1968) Durch Acetylcholin hervorgerufene antidrome Aktivität im kardinalen Sympathicus und Noradrenalinfreisetzung unter Guanethidin. Helv Physiol Pharmacol Acta 26: 352–354

    Google Scholar 

  • Hengstmann JH, Falkner FC (1979) Disposition of guanethidine during chronic oral therapy. Eur J Clin Pharmacol 15: 121–125

    Article  PubMed  CAS  Google Scholar 

  • Hey P, Willey GL (1954) Choline 2:6-xylyl ether bromide; an active quaternary local anaesthetic. Br J Pharmacol 9: 471–475

    CAS  Google Scholar 

  • Johnston AW, Prichard BNC, Rosenheim ML (1964) The use of bethanidine in the treatment of hypertension. Lancet 11: 659–661

    Article  Google Scholar 

  • Khan I, Asmae R (1968) Effects of reserpine and guanethidine on the responses of the isolated rat fundus strip to substituted tryptamines and catecholamines. Life Sci 7: 307–316

    Article  PubMed  CAS  Google Scholar 

  • Kidd GJ, Heath JW, Dunkley PR (1986) Degeneration of myelinated sympathetic nerve fibres following treatment with guanethidine. J Neurocytol 15: 561–572

    Article  PubMed  CAS  Google Scholar 

  • Kirpekar M, Mirpekar SM, Prat JC (1976) Effect of 4-aminopyridine (4-AP) on release of norepinephrine (NE) from the perfused cat spleen by nerve stimulation ( NS) and potassium (K ). Pharmacologist 18: 208

    Google Scholar 

  • Kirpekar M, Kirpekar SM, Prat JC (1978) Reversal of guanethidine blockade of sympathetic nerve terminals by tetraethylammonium and 4-aminopyridine. Br J Pharmacol 62: 75–78.

    PubMed  CAS  Google Scholar 

  • Kirpekar SM, Wakade AR, Dixon W, Prat JC (1969) Effect of cocaine, phenoxybenzamine and calcium on the inhibition of norepinephrine output from the cat spleen by guanethidine. J Pharmacol Exp Ther 165: 166–175

    PubMed  CAS  Google Scholar 

  • Kirpekar SM, Prat JC, Puig M, Wakade AR (1972) Modification of the evoked release of noradrenaline from the perfused cat spleen by various ions and agents. J Physiol 221: 601–615

    PubMed  CAS  Google Scholar 

  • Kirpekar SM, Wakade AR, Prat JC (1976) Effect of tetraethylammonium and barium on the release of noradrenaline from the perfused cat spleen by nerve stimulation and potassium. Naunyn-Schmiedebergs Arch Pharmacol 294: 23–29

    Article  PubMed  CAS  Google Scholar 

  • Kuntzman R, Costa E, Gessa GL, Brodie BB (1962) Reserpine and guanethidine action on peripheral stores of catecholamines. Life Sci 1: 65–74

    Article  PubMed  CAS  Google Scholar 

  • Leishman AWD, Mathews HL, Smith AJ (1959) Guanethidine: hypotensive drug with prolonged action. Lancet 11: 1044–1048

    Article  Google Scholar 

  • Leveque PE (1964) Guanethidine as an anti-fibrillatory agent. Nature 203: 1389

    Article  PubMed  CAS  Google Scholar 

  • Leveque PE (1965) Anti-arrhythmic action of bretylium. Nature 207: 203–204

    Article  PubMed  CAS  Google Scholar 

  • Leveque PE (1966) Bethanidine: a new anti-fibrillatory agent. Arch Int Pharmacodyn 163: 422–426

    CAS  Google Scholar 

  • Lundberg JM, Anggard A, Theodorsson-Norheim E, Pernow J (1984) Guanethidinesensitive release of neuropeptide Y-like immunoreactivity in cat spleen by sympathetic nerve stimulation. Neurosci Lett 52: 175–180

    Article  PubMed  CAS  Google Scholar 

  • Maccarrone C, Jarrott B (1986) Neuropeptide Y: a putative neurotransmitter. Neurochem Int 8: 13–22

    Article  PubMed  CAS  Google Scholar 

  • Manning PT, Russell JH, Johnson EM Jr (1982) Immunosuppressive agents prevent guanethidine-induced destruction of rat sympathetic neurons. Brain Res 241: 131–143

    Article  PubMed  CAS  Google Scholar 

  • Manning PT, Powers CW, Schmidt RE, Johnson EMJ (1983) Guanethidine-induced a destruction of peripheral sympathetic neurons occurs by an immune-mediated mechanism. J Neurosci 3: 714–724

    PubMed  CAS  Google Scholar 

  • Mason DT, Braunwald E (1964) Effects of guanethidine, reserpine and methyldopa on reflex venous and arterial constriction in man. J Clin Invest 43: 1449–1463

    Article  PubMed  CAS  Google Scholar 

  • Maxwell RA (1962) Clinical and experimental pharmacology of sympathetic blocking agents. Conn Med 26: 646–651

    PubMed  CAS  Google Scholar 

  • Maxwell RA (1982) Guanethidine after twenty years: a pharmacologists perspective. Br J Clin Pharmacol 13: 35–44

    PubMed  Google Scholar 

  • Maxwell RA, Plummer AJ, Ross SD, Paytas JJ, Dennis AD (1957) Antihypertensive effects of the central nervous stimulant, methylphenidate. Arch Int Pharmacodyn 112: 26–35

    PubMed  CAS  Google Scholar 

  • Maxwell RA, Plummer AJ, Ross SD, Daniel AI (1958) Studies concerning the cardiovascular actions of the central nervous stimulant, methylphenidate. J Pharmacol Exp Ther 123: 22–27

    PubMed  CAS  Google Scholar 

  • McMartin C, Rondel RK, Vinter J, Allan BR, Humbersteon PM, Leishman AWD, Sandler G, Thirkettle JL (1970) The fate of guanethidine in two hypertensive patients. Clin Pharmacol Ther 11: 423–431

    PubMed  CAS  Google Scholar 

  • McMartin C, Simpson P (1971) The absorption and metabolism of guanethidine in hypertensive patients requiring different doses of the drug. Clin Pharmacol Ther 11: 423–430

    Google Scholar 

  • Medina MA, Giachetti A, Shore PA (1969) On the physiological disposition and possible mechanism of the antihypertensive action of debrisoquin. Biochem Pharmacol 18: 891–901

    Article  PubMed  CAS  Google Scholar 

  • Misu Y, Nishio H, Hosotani T, Hamano S (1976) A new Guanidine derivative: dissociation of the adrenergic neuron blocking activity from local anesthetic activity. Jpn J Pharmacol 26: 367–375

    Article  PubMed  CAS  Google Scholar 

  • Mitchell JR, Oates JA (1970) Guanethidine and related agents. I. Mechanism of the selective blockade of adrenergic neurons and its antagonism by drugs. J Pharmacol Exp Ther 172: 100–107

    Google Scholar 

  • Mitchell JR, Cavanaugh JH, Dingell JV, Oates JA (1970) Guanethidine and related agents. II. Metabolism by hepatic microsomes and its inhibition by drugs. J Pharmacol Exp Ther 172: 108–114

    Google Scholar 

  • Moe RA, Bates HM, Palkoski ZM, Banziger R (1964) Cardiovascular effects of 3,4-dihydro-2 (1H) isoquinoline carboxamidine ( Declinax ). Curr Ther Res 6: 299–318

    Google Scholar 

  • Mosler M (1969) Guanethidine and bethanidine in the management of hypertension. Am Heart J 77: 423–426

    Article  Google Scholar 

  • Namm DH, Wang CM, El-Sayad S, Copp FC, Maxwell RA (1975) Effects of bretylium on rat cardiac muscle: electrophysiological effects and its uptake and binding in normal and immunosympathectomized rat hearts. J Pharmacol Exp Ther 193: 194–208

    PubMed  CAS  Google Scholar 

  • Newton BW, Melvin JE, Hamill RW (1987) Central neurotoxic effects of guanethidine: altered serotonin and encephalin neurons within the area postrema. Brain Res 404: 157–161

    Article  Google Scholar 

  • Oates JA, Mitchell JR, Feagin OT, Kaufmann JS, Shand DG (1971) Distribution of guanidinium antihypertensives—mechanism of their selective action. Ann NY Acad Sci 179: 302–309

    Article  PubMed  CAS  Google Scholar 

  • Obianwu HO, Stitzel R, Lundborg P (1968) Subcellular distribution of [3H] amphetamine and [3H] guanethidine and their interaction with adrenergic neurons. J Pharm Pharmacol 20: 585–594

    Article  PubMed  CAS  Google Scholar 

  • Orimilikwe SO, Wong HY, David SN, Reinshagen JA (1983) Effect of exercise and guanethidine on plasma cholesterol and aortic atherosclerosis of atherogenic-fed cockerels. Artery 12: 60–73

    PubMed  CAS  Google Scholar 

  • Palmatier MA, Schmidt RE, Plurad SB, Johnson EM Jr (1987) Sympathetic neuronal destruction in macaque monkeys by guanethidine and guanadine. Ann Neurol 21: 46–52

    Article  PubMed  CAS  Google Scholar 

  • Potter EK (1987) Guanethidine blocks neuropeptide-Y like inhibitory action of sympathetic nerves of cardiac vagus. J Auton Nerv Syst 21: 87–90

    Article  PubMed  CAS  Google Scholar 

  • Prichard BNC, Johnston AW, Hill ID, Rosenheim ML (1968) Bethanidine, guanethidine, and methyldopa in treatment of hypertension: a within-patient comparison. Br Med J 1: 135–144

    Article  PubMed  CAS  Google Scholar 

  • Rahn KH (1971) Plasmaspiegel and renale Ausschiedung von Guanethidin bei Hypertonikern. Arzneimittel forschung 21: 1487–1492

    PubMed  CAS  Google Scholar 

  • Rahn KH (1973) The influence of renal function on plasma levels, urinary excretion, metabolism and antihypertensive effect of guanethidine (Ismelin). Clin Neurol 1: 14–18

    CAS  Google Scholar 

  • Rahn KH, Goldberg LI (1969) Comparison of antihypertensive efficacy, intestinal absorption and excretion of guanethidine in hypertensive patients. Clin Pharmacol Ther 10: 858–863

    PubMed  CAS  Google Scholar 

  • Raines A, Moros D, Levitt B (1968) The effect of guanethidine on ouabain-induced ventricular arrhythmia in the cat. Arch Int Pharmacodyn 174: 373–377

    PubMed  CAS  Google Scholar 

  • Rand MJ, Wilson J (1967) The relationship between adrenergic neurone blocking activity and local anaesthetic activity in a series of guanidine derivatives. Eur J Pharmacol 1: 200–209

    Article  PubMed  CAS  Google Scholar 

  • Rankin GO, Haas GJ Jr (1984) Effects of Captopril on the development of tolerance to guanethidine. Fed Proc 43: 1342–1345

    PubMed  CAS  Google Scholar 

  • Rankin GO, Watkins BE, Sawutz DG (1984) Development of tolerance to guanethidine in three hypertensive rat models. Arch Int Pharmacodyn Ther 271: 263–274

    PubMed  CAS  Google Scholar 

  • Reynolds JEF (1982) Martindale: the extrapharmacoepoeia. Pharmaceutical Press, London, p 146

    Google Scholar 

  • Richardson DW, Wyso EM, Magee JH, Cavell GC (1960) Circulatory effects of guanethidine. Circulation 22: 184–190

    CAS  Google Scholar 

  • Ronnov-Jennsen V, Hansen J (1969) Blood volume and exchangable sodium during treatment of hypertension with guanethidine and hydrochlorothiazide. Acta Med Scand 186: 255–263

    Article  Google Scholar 

  • Safan ME, Weiss YA, Corvol PL, Menard JE, London GM, Milliez PL (1975) Antihypertensive adrenergic blocking agents: effects on sodium balance, the reninangiotensin system and hemodynamics. Clin Sei Mol Med 48 [Suppl 2]: 93s–95s

    Google Scholar 

  • Schanker LS, Morrison AS (1965) Physiological disposition of guanethidine in the rat and its uptake by heart slices. Int J Neuropharmacol 4: 27–39

    Article  PubMed  CAS  Google Scholar 

  • Shapiro AP, Krifcher E (1964) Pressor response to noxious stimuli in hypertensive patients. Effects of guanethidine sulfate and alpha methyldopa. Circulation 30: 671–678

    Google Scholar 

  • Schlicker E, Gothert M (1983) Effects of bretylium and guanethidine on 3H-noradrenaline and 3H-serotonin release in rat brain cortex slices. Arch Int Pharmacodyn Ther 261: 196–204

    PubMed  CAS  Google Scholar 

  • Smirk H (1963) The hypotensive action of B.W. 467C60. Lancet 1: 743–746

    Article  PubMed  CAS  Google Scholar 

  • Stutzin A, Paravic F, Ormenno G, Orrego F (1983) Guanethidine effects on the guineapig vas deferens are antagonized by the blockers of calcium activated potassium conductance, apamin, methylene blue, and quinine. Mol Pharmacol 23: 409–416

    PubMed  CAS  Google Scholar 

  • Tabira T, Shibasaki H, Kuroiwa Y (1983) Reflex sympathetic dystrophy (causalgia) treatment with guanethidine. Arch Neurol 40: 430–432

    PubMed  CAS  Google Scholar 

  • Thoenen H, Haefely W, Staehelin H (1967) Potentiation by tetraethylammonium of the response of the cat spleen to postganglionic sympathetic nerve stimulation. J Pharmacol Exp Ther 157: 532–540

    PubMed  CAS  Google Scholar 

  • Villarreal H, Exaire JE, Rubio V, Davila H (1964) Effect of guanethidine and bretylium tosylate on systemic and renal hemodynamics in essential hypertension. Am J Cardiol 14: 633–640

    Article  PubMed  CAS  Google Scholar 

  • Wilson J (1970) The uptake of adrenergic neurone blocking drugs. Br J Pharmacol 40: 159P–160 P

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Louis, W.J., Howes, L.G. (1990). Guanethidine and Related Compounds. In: Ganten, D., Mulrow, P.J. (eds) Pharmacology of Antihypertensive Therapeutics. Handbook of Experimental Pharmacology, vol 93 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74209-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74209-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74211-8

  • Online ISBN: 978-3-642-74209-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics