Skip to main content

Interferences with 5-Hydroxytryptamine

  • Chapter
Pharmacology of Antihypertensive Therapeutics

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 93 / 1))

  • 160 Accesses

Abstract

5-Hydroxytryptamine (5-HT, serotonin) is present both in the periphery and in the CNS, where it functions as a neurotransmitter. In the periphery 5-HT is mainly synthesized in the enterochromaffin cells from whence it is released into the portal circulation to be taken up by blood platelets. The physiological role of 5-HT in cardiovascular regulation is still unclear, but the amine has powerful pharmacological effects on the heart (see SAXENA 1986) and blood vessels. Its vascular effects depend upon several factors (species, vascular bed, dose, etc.), and it can elicit either vasodilatation or vasoconstriction directly, which can be modified indirectly, via neural mechanisms. Recent investigations suggest that the cardiovascular and, indeed, other effects of 5-HT are mediated by at least three types of receptors for 5-HT. In this chapter we deal first with the subdivision, nomenclature, and function of 5-HT receptors and subsequently with the antihypertensive effects of agents acting via interferences with the 5-HT system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antonaccio MJ, Taylor DJ (1977) Reduction in blood pressure, sympathetic nerve discharge and centrally evoked pressor responses by methysergide in anaesthetized cats. Eur J Pharmacol 42: 331–338

    PubMed  CAS  Google Scholar 

  • Ball SG, Zabludowski JR, Robertson JIS (1983) Mechanism of antihypertensive action of ketanserin in man. Br Med J 287: 1065

    CAS  Google Scholar 

  • Berdeaux A, Edouard A, Samü K, Giudicelli JF (1987) Ketanserin and the arterial baroreceptor reflex in normotensive subjects. Eur J Clin Pharmacol 32: 27–33

    PubMed  CAS  Google Scholar 

  • Bhargava KP, Tangri KK (1959) The central vasomotor effects of 5-hydroxytryptamine. Br J Pharmacol 14: 411–414

    CAS  Google Scholar 

  • Blackburn TP, Haworth SJ, Jessup CL, Morton PB, Williams C (1988) ICI 170809, a selective 5-hydroxytryptamine antagonist, inhibits human aggregation in vitro and ex vivo (Abstr P37). International Congress on Cardiovascular Pharmacology of 5-HT, Oct 4–7, Amsterdam

    Google Scholar 

  • Blauw GJ, van Brummelen P, Chang PC, van Zwieten PA (1987) Vascular effects of serotonin and ketanserin in man. J Hypertens [Suppl 5] 5: S201–S203

    CAS  Google Scholar 

  • Blauw GJ, van Brummelen P, Chang PC, van Zwieten PA (1988) Regional vascular effects of serotonin and ketanserin in young, healthy subjects. Hypertension 11: 256–263

    PubMed  CAS  Google Scholar 

  • Bolt GR, Saxena PR (1985) Cardiovascular profile and hypotensive mechanism of ketanserin in the rabbit. Hypertension 7: 499–506

    PubMed  CAS  Google Scholar 

  • Bradley PB, Engel G, Feniuk W, Fozard JR, Humphrey PPA, Middlemiss DN, Mylecharane JE, Richardson B, Saxem PR (1986) Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology 25: 563–575

    PubMed  CAS  Google Scholar 

  • Casiglia E, Gava R, Semplicini A, Nicolin P, Pessina AC (1986) The mechanism of the antihypertensive effects of ketanserin: a comparison with metoprolol. Br J Clin Pharmacol 22: 751–752

    PubMed  CAS  Google Scholar 

  • Chalmers JP (1975) Brain amines and models of experimental hypertension. Circ Res 36: 469–480

    PubMed  CAS  Google Scholar 

  • Charlton KG, Bond RA, Clarke DE (1986) An inhibitory prejunctional 5-HT rlike receptor in the isolated perfused rat kidney. Naunyn Schmied ebergs Arch Pharmacol 332: 8–15

    CAS  Google Scholar 

  • Cocks TM, Angus JA (1983) Endothelium-dependent relaxation of coronary arteries by noradrenaline and serotonin. Nature 305: 627–630

    PubMed  CAS  Google Scholar 

  • Cohen ML, Fuller RW, Kurz KD (1983) LY 53857, a selective new potent serotonergic (5-HT2) receptor antagonist, does not lower blood pressure in the spontaneously hypertensive rat. J Pharmacol Exp Ther 227: 327–332

    PubMed  CAS  Google Scholar 

  • Cohen RA (1985) Serotonergic prejunctional inhibition of canine coronary adrenergic nerves. J Pharmacol Exp Ther 235: 76–80

    PubMed  CAS  Google Scholar 

  • Coote JH, Dalton DW, Feniuk W, Humphrey PPA (1987) The central site of the sympatho-inhibitory action of 5-hydroxytryptamine in the cat. Neuropharmacology 26: 147–154

    PubMed  CAS  Google Scholar 

  • Copeland IW, Bentley GA (1985) A possible central action of prazosin and ketanserin to cause hypotension. J Cardiovasc Pharmacol 7: 822–825

    PubMed  CAS  Google Scholar 

  • Dabire H, Cherqui C, Fournier B, Schmitt H (1987) Comparison of effects of some 5-HTx agonists on blood pressure and heart rate of normotensive anesthetized rats. Eur J Pharmacol 140: 259–266

    PubMed  CAS  Google Scholar 

  • Dalton DW (1986) The cardiovascular effects of centrally administered 5-hydroxytryptamine in the conscious normotensive and hypertensive rat. J Auton Pharmacol 6: 67–75

    PubMed  CAS  Google Scholar 

  • De Voogd JM (1988) Early clinical experience with flesinoxan, a new selective 5-HT1A agonist (Abstr P42). International Congress on Cardiovascular Pharmacology of 5-HT, Oct 4–7, Amsterdam

    Google Scholar 

  • Docherty JR (1986) 5-Hydroxytryptamine receptors involved in vasodilation in the pithed rat. Br J Pharmacol 89:753P

    Google Scholar 

  • Doods HN, Kalkman HO, de Jonge A, Thoolen JMC, Wilffert B, Timmermans PBMWM, van Zwieten PA (1985) Differential selectivities of RU 24969 and 8-OHDPAT for the purported 5-HTiA and 5 - H T 1 B binding sites. Correlation between 5-HT1A affinity and hypertensive activity. Eur J Pharmacol 112: 363–370

    CAS  Google Scholar 

  • Doods HN, Kalkman HO, Mathy MJ (1987) Central hypertensive activity in the cat of compounds with high affinity for 5-HT1A-receptors. Naunyn Schmied ebergs Arch Pharmacol 335: R90

    Google Scholar 

  • Dragsted N, Boeck V (1988) Cardiovascular effects of irindalone, a novel 5-HT2 antagonist with antihypertensive activity (Abstr P43). International Congress on Cardiovascular Pharmacology of 5-HT, Oct 4-7, Amsterdam

    Google Scholar 

  • Engel G, Gothert M, Muller-Schweinitzer E, Schlicker E, Sistonen L, Stadler PA (1983) Evidence for common pharmacological properties of [3H]5-hydroxytryptamine binding sites, presynaptic 5-hydroxytryptamine autoreceptors in CNS and inhibitory presynaptic 5-hydroxytryptamine receptors on sympathetic nerves. Naunyn Schmied ebergs Arch Pharmacol 324: 116–124

    CAS  Google Scholar 

  • Fagard R, Fioli R, Lijnen P, Staessen J, Moeman E, de Schaepdryver A, Amery A (1984) Haemodynamic and humoral responses to chronic ketanserin treatment in essential hypertension. Br Heart J 51: 149–156

    CAS  Google Scholar 

  • Feniuk W, Humphrey PPA, Watts AD (1979) Presynaptic inhibitory action of 5-hydroxytryptamine in dog isolated saphenous vein. Br J Pharmacol 67: 247–254

    PubMed  CAS  Google Scholar 

  • Feniuk W, Humphrey PPA, Watts AD (1981) Analysis of the mechanism of 5-hydroxytryptamine- induced vasopressor responses in ganglion-blocked anaesthetized dogs. J Pharm Pharmacol 33: 155–160

    PubMed  CAS  Google Scholar 

  • Fozard JR (1982) Mechanism of the hypotensive effect of ketanserin. J Cardiovasc Pharmacol 4: 829–838

    PubMed  CAS  Google Scholar 

  • Fozard JR (1984) MDL 72222: a potent and highly selective antagonist at neuronal 5-HT receptors. Naunyn Schmied ebergs Arch Pharmacol 326: 36–44

    CAS  Google Scholar 

  • Fozard JR, Mir AK, Middlemiss DN (1987) The cardiovascular response to 8-hydroxy-2-(Di-N-propylamino)-tetralin (8-OH-DPAT) in the rat: site of action and pharmacological analysis. J Cardiovasc Pharmacol 9: 328–347

    PubMed  CAS  Google Scholar 

  • Gaddum JH, Picarelli ZP (1957) Two kinds of tryptamine receptors. Br J Pharmacol 12: 323–328

    CAS  Google Scholar 

  • Gillis RA, Hill K, Kirbt JS, Martino-Barrows A, Gatti PJ, Quest JA, Norman WP, Kellar KJ (1987) Possible sites and mechanisms where by urapidil and its analogue B695-40 exert CNS mediated hypotensive effects. In Rand MJ, Raper C (eds) Pharmacology. Elsevier, Amsterdam, pp 31–36

    Google Scholar 

  • Gothert M, Schlicker E, Kollecker P (1986) Receptor mediated effects of serotonin and 5-methoxytryptamine on noradrenaline release in the rat vena cavia and in the heart of the pithed rat. Naunyn Schmied ebergs Arch Pharmacol 336: 124–130

    Google Scholar 

  • Gradin K, Pettersson A, Hedner T, Persson B (1985) Acute administration of 8-hydroxy-2-(Di-N-propylamino) tetralin (8-OH-DPAT), a selective 5-HT-receptor agonist, causes a biphasic blood pressure response and a bradycardia in the normotensive Sprague-Dawley rat and in the spontaneously hypertensive rat. J Neural Transm 62: 305–319

    PubMed  CAS  Google Scholar 

  • Griffith TM, Henderson AH, Hughes ED, Lewis MJ (1984) Isolated perfused rabbit coronary artery and aortic strip preparations: The role of endothelium-derived relaxant factor. J Physiol (Lond) 351: 12–24

    Google Scholar 

  • Gross G, Hanft G, Kolassa N (1987) Derivatives of urapidil with hypotensive properties high affinity for 5-HT1A receptors. Br J Pharmacol 92: 753 P

    Google Scholar 

  • Hedner T, Pettersson A, Gradin K, Persson B (1986) Peripheral serotonergic mechanisms in cardiovascular regulation in the spontaneously hypertensive rat. J Hypertens [Suppl 3] 4: S223–S225

    CAS  Google Scholar 

  • Hedner T, Andersson OK, Pettersson A, Persson B (1987) Cardiovascular effects of Interferences with 5-Hydroxytryptamine 555 ketanserin during cold pressure and during isometric and dynamic exercise in hypertensive patients. J Cardiovasc Pharmacol [Suppl 3] 10: S73–S77

    Google Scholar 

  • Herrmann WM, Baumgartner P (1986) Combined pharmaco-EEG and pharmacopsychological study to estimate CNS effects of ketanserin in hypertensive patients. Neuropsychobiology 16: 47–56

    PubMed  CAS  Google Scholar 

  • Heuring RE, Peroutka SJ (1987) Characterization of a novel 3H-5-hydroxytryptamine binding site subtypes in bovine brain membranes. J Neurosci 7: 894–903

    PubMed  CAS  Google Scholar 

  • Hollenberg NK (1987) Collateral arterial tree and responses to serotonin. J Cardiovasc Pharmacol [Suppl 3] 10: S35–S38

    CAS  Google Scholar 

  • Hong E, Rion R, Vidrio M (1983) Stimulation of central serotonin receptors as a novel mechanism of antihypertensive activity. In: Bevan JA, Fujiwara M, Maxwell RA, Mohri K, Shibata S, Toda N (eds) Vascular neuroeffector mechanisms. Raven, New York, pp 273–277

    Google Scholar 

  • Hosie J, Stott DJ, Robertson JIS, Ball SG (1987) Does acute serotenergic type-2 antagonism reduce blood pressure? Comparative effects of single doses of ritanserin and ketanserin in essential hypertension. J Cardiovasc Pharmacol [Suppl 3] 10: S86–S88

    Google Scholar 

  • Houston DS, Vanhoutte PM (1988) Comparison of serotonergic receptor subtypes on the smooth muscle and endothelium of the canine coronary artery. J Pharmacol Exp Ther 244: 1–10

    PubMed  CAS  Google Scholar 

  • Hoyer D, Neijt HC (1988) Identification of serotonin 5-HT3 recognition sites in membranes of N1E-115 neuroblastoma cells by radioligand binding. Mol Pharmacol 33: 303–309

    PubMed  CAS  Google Scholar 

  • Hoyer D, Engel G, Kalkman HO (1985) Molecular pharmacology of 5-HT and 5-HT2 recognition sites in rat and pig brain membranes: radioligand binding studies with [3H]5-HT, [3H]8-OH-DPAT, (-)[125I]iodocyano-pindolol, [3H] mesulergine and [3Hjketanserin. Eur J Pharmacol 118: 13–23

    PubMed  CAS  Google Scholar 

  • Humphrey PPA, Richardson BP (1989) 5-HT receptor classification: a current view based on a workshop debate. In: Mylecharane EJ, Angus A, de la Lande I, Humphrey PPA (eds) Serotonin. Macmillan, Basingstoke (in press)

    Google Scholar 

  • Imaizumi Y, Baba M, Imaizumi Y, Watanabe M (1984) Involvement of endothelium in the relaxation of isolated chick jugular vein by 5-hydroxytryptamine. Eur J Pharmacol 97: 335–336

    PubMed  CAS  Google Scholar 

  • Janssen PAJ (1985) Pharmacology of potent and selective S2-serotonergic antagonists. J Cardiovasc Pharmacol [Suppl 7] 7. S2–S11

    CAS  Google Scholar 

  • Kalkman HO, Timmermans PBMWM, van Zwieten PA (1982) Characterization of the antihypertensive properties of ketanserin (R41468) in rats. J Pharmacol Exp Ther 222: 227–231

    PubMed  CAS  Google Scholar 

  • Kalkman HO, Boddeke HWGM, Doods HN, Timmermans PBMWM, van Zwieten PA (1983a) Hypertensive activity of serotonin receptor agonists in rats is elated to their affinity for 5-HTi receptors. Eur J Pharmacol 91: 155–156

    PubMed  CAS  Google Scholar 

  • Kalkman HO, Harms YM, van Gelderen EM, Batink HD, Timmermans PBMWM, van Zwieten PA (1983b) Hypotensive activity of serotonin antagonists; correlation with aradrenoceptor and serotonin receptor blockade. Life Sci 32: 1499–1505

    PubMed  CAS  Google Scholar 

  • Kalkman HO, Engel G, Hoyer D (1984) Three distinct types of serotonergic receptors mediate the triphasic blood pressure response to serotonin in rats. J Hypertens [Suppl 2] 6: S421–S428

    Google Scholar 

  • Kilpatrick GJ, Jones BJ, Tyers MB (1987) Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature 330: 746–748

    PubMed  CAS  Google Scholar 

  • Krstic MK (1985) Central serotonergic and tryptaminergic regulation of the cardiovascular system. Period Biol 87: 131–140

    CAS  Google Scholar 

  • Kuhn DM, Wolf WA, Lovenberg W (1980) Review of the role of the central serotonergic neuronal system in blood pressure regulation. Hypertension 2: 243–255

    PubMed  CAS  Google Scholar 

  • Lamping KG, Marcus ML, Dole WP (1985) Removal of endothelium potentiates canine large coronary artery constrictor responses to 5-hydroxytryptamine in vivo. Circ Res 57: 46–54

    PubMed  CAS  Google Scholar 

  • Leff P, Martin GR, Morse JM (1987) Differential classification of vascular smooth muscle and endothelial cell 5-HT receptors by use of tryptamine analogues. Br J Pharmacol 91: 321–331

    PubMed  CAS  Google Scholar 

  • Leysen JE (1981) Serotonergic receptors in brain tissue: properties and identification of various 3H-ligand binding sites in vitro. J Physiol (Paris) 77: 351–362

    CAS  Google Scholar 

  • Leysen JE, de Chaffoy de Courcelles D, de Clerck F, Niemegeers CJE, van Nueten JM (1984) Serotonin-S2 receptor binding sites and functional correlates. Neuropharmacology 23: 1493–1501

    CAS  Google Scholar 

  • Lorenz RR, Vanhoutte PM (1985) Prejunctional adrenergic inhibition by aggregating platelets in canine blood vessels. Am J Physiol 249: H685–H689

    PubMed  CAS  Google Scholar 

  • Martin GE, Lis EV (1985) Hypertensive action of 8-hydroxy-2-(Di-N-propylamino) tetralin (8-OH-DPAT) in spontaneously hypertensive rats. Arch Int Pharmacodyn 273: 251–261

    PubMed  CAS  Google Scholar 

  • Martin GR, Leff P, Cambridge D, Barrett VJ (1987) Comparative analysis of two types of 5-hydroxytryptamine receptor mediating vasorelaxation: differential classification using tryptamines. Naunyn Schmiedebergs Arch Pharmacol 336: 365–373

    PubMed  CAS  Google Scholar 

  • Marwood JF, Stokes GS (1984) Studies on the mechanism of action of the hypotensive effect of ketanserin. Clin Exp Pharmacol Physiol 11: 125–132

    PubMed  CAS  Google Scholar 

  • McCall RB, Schuette MR (1984) Evidence for an alpha-1 receptor-mediated central sympathoinhibitory action of ketanserin. J Pharmacol Exp Ther 228: 704–710

    PubMed  CAS  Google Scholar 

  • McCall RB, Patel BN, Harris LT (1987) Effects of serotonin and serotonin2 receptor agonists and antagonists on blood pressure, heart rate and sympathetic nerve activity. J Pharmacol Exp Ther 242: 1152–1159

    PubMed  CAS  Google Scholar 

  • Molderings GJ, Fink K, Schlicker E, Gothert M (1987) Inhibition of noradrenaline release via presynaptic 5-HT1B receptors of the rat vena cava. Naunyn Schmiedebergs Arch Pharmacol 336: 245–280

    PubMed  CAS  Google Scholar 

  • Nelson DL, Taylor ET (1986) Spiroxatrine: A selective serotonin1A receptor antagonist. Eur J Pharmacol 124: 207–208

    PubMed  CAS  Google Scholar 

  • Page IH (1957) Cardiovascular actions of serotonin (5-hydroxytryptamine). In: Lewis GP (ed) 5-Hydroxytryptamine. Pergamon, London, pp 93–108

    Google Scholar 

  • Page IH, McCubbin JW (1953) Modification of vascular responses to serotonin. Am J Physiol 174: 436–440

    PubMed  CAS  Google Scholar 

  • Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327: 524–526

    PubMed  CAS  Google Scholar 

  • Pedigo NW, Yamamura HI, Nelson DL (1981) Discrimination of multiple [3H]5-hydroxytryptamine binding sites by the neuroleptic spiperone in rat brain. J Neurochem 36: 220–226

    PubMed  CAS  Google Scholar 

  • Peroutka SJ (1986) Pharmacological identification of 5-HT1A, 5-HT1B and 5-HTlc binding sites in rat frontal cortex. J Neurochem 47: 529–540

    PubMed  CAS  Google Scholar 

  • Peroutka SJ, Snyder SH (1979) Multiple serotonin receptors differential binding of [3H]-5-hydroxytryptamine, [3H]-lysergic acid diethylamide and [3H]-spiroperidol. Mol Pharmacol 16: 687–699

    PubMed  CAS  Google Scholar 

  • Phillips CA, Mylecharane EJ, Markus JK, Shaw J (1985) Hypotensive actions of ketanserin in dogs: involvement of a centrally mediated inhibition of sympathetic vascular tone. Eur J Pharmacol 111: 319–327

    PubMed  CAS  Google Scholar 

  • Ramage AG (1985) The effects of ketanserin, methysergide and LY 53857 on sympathetic nerve activity. Eur J Pharmacol 113: 295–303

    PubMed  CAS  Google Scholar 

  • Ramage AG, Fozard JR (1987) Evidence that the putative 5-HT1A receptor agonists, 8-OH-DPAT and ipsapirone, have a central hypertensive action that differs from that of clonidine in anaesthetized cats. Eur J Pharmacol 38: 179–191

    Google Scholar 

  • Ramage AG, Wilkinson SJ (1988) Evidence for differentiation sympathoinhibitory action of 8-OH-DPAT and clonidine in anaesthetized cats. Br J Pharmacol 93: 121 P

    Google Scholar 

  • Ramage AG, Wouters W, Bevan P (1988) Evidence that the novel antihypertensive agent flesinoxan causes differential sympathoinhibition and also increases vagal tone by a central action. Eur J Pharmacol 151: 373–379

    PubMed  CAS  Google Scholar 

  • Reimann IW, Frohlich JC (1983) Mechanism of antihypertensive action of ketanserin in man. Br Med J 287: 381–383

    CAS  Google Scholar 

  • Reimann IW, Ziegler G, Ludwig L, Frohlich JC (1986) Central and autonomic nervous system side effects of ketanserin. Arzneimittel forschung 36 (2): 1681–1684

    PubMed  CAS  Google Scholar 

  • Saxena PR (1974) Selective vasoconstriction in the carotid vascular bed by methysergide: possible relevance to its antimigraine effect. Eur J Pharmacol 27: 99–105

    PubMed  CAS  Google Scholar 

  • Saxena PR (1986) Nature of the 5-hydroxytryptamine receptors in mammalian heart. Prog Pharmacol 6: 173–185

    CAS  Google Scholar 

  • Saxena PR, Lawang A (1985) A comparison of cardiovascular and smooth muscle effects of 5-hydroxytryptamine and 5-carboxamidotryptamine, a selective agonist of 5-HT ilike receptors. Arch Int Pharmacodyn Ther 227: 235–252

    Google Scholar 

  • Saxena PR, Verdouw PD (1982) Redistribution by 5-hydroxytryptamine of carotid arterial blood at the expense of arteriovenous blood flow. J Physiol (Lond) 332: 501–520

    CAS  Google Scholar 

  • Saxena PR, Verdouw PD (1984) Effects of methysergide and 5-hydroxytryptamine on carotid blood flow distribution in pigs: further evidence of the presence of atypical 5-HT receptors. Br J Pharmacol 82: 817–826

    PubMed  CAS  Google Scholar 

  • Saxena PR, van Houwelingen P, Bonta IL (1971) The effect of mianserin hydrochloride on the vascular responses to 5-hydroxytryptamine and related substances. Eur J Pharmacol 13: 295–305

    PubMed  CAS  Google Scholar 

  • Saxena PR, Mylecharane EJ, Heiligers J (1985) Analysis of the heart rate effects of 5-hydroxytryptamine in the cat; mediation by 5-Ifiyiike receptors. Naunyn Schmiedebergs Arch Pharmacol 330: 121–129

    PubMed  CAS  Google Scholar 

  • Saxena PR, Richardson B, Mylecharane EJ, Middlemiss DN, Humphrey PPA, Fozard JR, Feniuk W, et al. (1986) Functional receptors for 5-hydroxytryptamine. Trends Pharmacol Sci 7(7): Centrefold

    Google Scholar 

  • Saxena PR, Bolt GR, Dhasmana KM (1987) Serotonin agonists and antagonists in experimental hypertension. J Cardiovasc Pharmacol [Suppl 3] 10: S12–S18

    CAS  Google Scholar 

  • Schröder G, Beckmann R, Müller B, Schulz BG, Stock G (1988) Pharmacological profile of ZK 33.839, a new 5-HT2/(Xi-antagonist (Abstr P38). International Congress on Cardiovascular Pharmacology of 5-HT, Oct 4-7, Amsterdam

    Google Scholar 

  • Srimal RC, Gulati AK, Dhawan BN (1984) Centhaquin, a new centrally acting hypotensive agent (Abstr). 9th IUPHAR Congress, London Sukamoto TT, Yamamoto S, Watanabe S, Ueki S (1984) Cardiovascular responses to centrally administered serotonin in conscious normotensive and spontaneously hypertensive rats. Eur J Pharmacol 100: 173–179

    Google Scholar 

  • Symoens J, Vanhoutte PM (1985) The role of serotonin in blood pressure regulation. In: Smith JAR, Watkins J (eds) Care of the postoperative patient. Butterworth, London, pp 141–164

    Google Scholar 

  • Van der Starre PJA (1988) Ketanserin and hypertension in cardiac surgery. Thesis, State University of Limburg, Maastricht

    Google Scholar 

  • Vanhoutte PM, van Nueten JM, Symoens J, Janssen PAJ (1983) Antihypertensive properties of ketanserin (R7 41 468). Fed Proc 42: 182–185

    PubMed  CAS  Google Scholar 

  • Vanhoutte PM, Ball SG, Berdeaux A, Cohen ML, Hedner T, McCall R, Ramage AG, et al. (1986) Mechanism of action of ketanserin in hypertension. Trends Pharmacol Sci 7: 58–59

    CAS  Google Scholar 

  • Vanhoutte PM, Amery A, Birkenhäger W, Breckenridge A, Bühler F, Distler A, Dormandy J. et al. (1988) Serotonergic mechanisms in hypertension: Focus on the effects of ketanserin. Hypertension 11: 111–133

    Google Scholar 

  • Van Nueten JM, Janssen PAJ, van Beek J, Xhonneux R, Verbeuren TJ, Vanhoutte PM (1981) Vascular effects of ketanserin (R 41 468), a novel antagonist of 5-HT2 serotonergic receptors. J Pharmacol Exp Ther 218: 217–230

    PubMed  Google Scholar 

  • Van Nueten JM, Schuurkes JAJ, de Ridder WJE, Kuyps JJMD, Janssens WJ (1986) Comparative pharmacological profile of ritanserin and ketanserin. Drug Dev Res 8: 187–195

    Google Scholar 

  • Van Nueten JM, Janssen PAJ, Symoens J, Janssens WJ, Heykants J,, de Clerck F, Leysen J et al. (1987) Ketanserin. In: Scriabine A (ed) New cardiovascular drugs 1987. Raven, New York, pp 1–56

    Google Scholar 

  • Van Nueten JM, Xhonneux R, Janssens WJ, Schuurkes JAJ, Janssen PAJ (1988) Interaction between S2-serotonergic and alpharadrenergic receptors and control of blood pressure. In: Vanhoutte PM (ed) Vasodilatation. Raven, New York, pp 267–272

    Google Scholar 

  • Van Zwieten PA, Mathy MJ, Doods HN (1987a) Demonstration of the central hypotensive activity of α-adrenoceptor antagonists. Focus on Urapidil. In: Rand MJ, Raper C (eds) Pharmacology. Elsevier, Amsterdam, pp 47–51

    Google Scholar 

  • Van Zwieten PA, Mathy MJ, Boddeke HWGM, Doods HN (1987b) Central hypotensive activity of ketanserin in cats. J Cardiovasc Pharmacol [Suppl 3] 10: S54–S58

    Google Scholar 

  • Verdouw PD, Jennewein HM, Heiligers J, Duncker DJ, Saxena PR (1984) Redistribution of carotid artery blood flow by 5-HT: effects of the 5-HT2 receptor antagonist ketanserin and WAL 1307. Eur J Pharmacol 102: 499–509

    PubMed  CAS  Google Scholar 

  • Verdouw PD, Jennewein HM, Mierau J, Saxena PR (1985) N-(3-acetylaminophenyl) piperazine hydrochloride (BEA 1654), a putative 5-HTi agonist, causes constriction of arteriovenous anastomoses and dilatation of arterioles. Eur J Pharmacol 107: 337–346

    PubMed  CAS  Google Scholar 

  • Waeber C, Schoeffter P, Palacios JM, Hoyer D (1988) Molecular pharmacology of 5-HTiD recognition site: radioligand binding studies in human, pig and calf brain membranes. Naunyn Schmiedebergs Arch Pharmacol, 337: 595–601

    PubMed  CAS  Google Scholar 

  • Wenting GJ, Man in’t Veld AJ, Woittiez AJJ, Boomsma F, Schalekamp MADH (1982) Haemodynamic effects of ketanserin, a selective 5-hydroxytryptamine (serotonin) receptor antagonist, in essential hypertension. Clin Sci 63: 435S–438S

    Google Scholar 

  • Woittiez AJJ, Wenting GJ, van der Meiracker AH, Ritsma van Eck HJ, Man in’t Veld AJ, Zantvoort FA, Schalekamp MADH (1986) Chronic effect of ketanserin in mild to moderate essential hypertension. Hypertension 8: 167–173

    Google Scholar 

  • Wolf WA, Kuhn DM, Lovenberg W (1985) Serotonin and central regulation of arterial blood pressure. In: Vanhoutte PM (ed) Serotonin and the cardiovascular system. Raven, New York, pp 63–73

    Google Scholar 

  • Wouters W, Hartog J, Bevan P (1988a) Flesinoxan. Cardiovasc Drug Rev 6: 71–83

    Google Scholar 

  • Wouters W, Tulp MTM, Bevan P (1988b) Flesinoxan lower blood pressure and heart rate in rats via 5-HT1A receptors. Eur J Pharmacol 149: 213–223

    PubMed  CAS  Google Scholar 

  • Wright CE, Angus JA (1983) Haemodynamic response tö ketanserin in rabbits with page hypertension: Comparison with prazosin. J Hypertens 1: 183–190

    PubMed  CAS  Google Scholar 

  • Wright CE, Angus JA (1987) Diverse vascular responses to serotonin in the conscious rabbit. Effects of serotonin antagonists on renal artery spasm. J Cardiovasc Pharmacol 10: 415–423

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Saxena, P.R., Wouters, W. (1990). Interferences with 5-Hydroxytryptamine. In: Ganten, D., Mulrow, P.J. (eds) Pharmacology of Antihypertensive Therapeutics. Handbook of Experimental Pharmacology, vol 93 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74209-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74209-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74211-8

  • Online ISBN: 978-3-642-74209-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics