Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 93 / 1))

Abstract

Arachidonic acid (AA) is converted by different mammalian enzymes to a variety of prostaglandins, thromboxanes, prostacyclin, and leukotrienes. Products of the AA metabolic pathway contribute to the regulation of circulatory (cardiovascular) homeostasis as well as to the pathogenesis of several conditions, such as thrombotic disorders, Bartter’s syndrome, asthma, and inflammation. This review will focus on the impact of AA products on mechanisms of blood pressure regulation, such as renal function and vascular tone. The contribution of AA products to the pathogenesis of primary hypertension will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe K (1981) The kinins and prostaglandins in hypertension. Clin Endocrinol Metab 3: 577

    Google Scholar 

  • Abe K, Ito T, Sato M, Haruyama T, Sato K, Omata K, Hiwatari M, Sakurai Y, Imai Y, Yoshinaga K (1980) Role of prostaglandins in the antihypertensive mechanism of captopril in low renin hypertension. Clin Sci Mol Med 59: 141S–144S

    CAS  Google Scholar 

  • Abe K, Sato M, Imai Y, Haruyama T, Sato K, Hiwatari M, Kasai Y, Yoshinaga K (1981) Renal kallikrein-kinin: its relation to renal prostanglandins and renin-angiotensinaldosterone in man. Kidney Int 19: 869–880

    PubMed  CAS  Google Scholar 

  • Aiken JW, Vane JR (1973) Intrarenal prostaglandin release attenuates the renal vasoconstrictor activity of angiotensin. J Pharmacol Exp Ther 184: 678–687

    PubMed  CAS  Google Scholar 

  • Albrightson CR, Evers AS, Griffin AC, Needleman P (1987) Effect of endogenously produced leukotrienes and thromboxane on renal vascular resistance in rabbit hydronephrosis. Circ Res 61: 514–522

    PubMed  CAS  Google Scholar 

  • Antonipillai I, Robin EC, Nadler JL, Horton R (1987) Dual regulatory role of prostaglandins and lipoxygenase products on renin secretion. In: Samuelsson B, Paoletti R, Ramwell PW (eds) Advances in prostaglandin, thromboxane, and leukotriene research, vol 17B. Raven, New York, p 733

    Google Scholar 

  • Atallah AA, Lee JB (1982) Prostaglandins, renal function and blood pressure regulation. In: Lee JB (ed) Prostaglandins. Elsevier, New York, p 251

    Google Scholar 

  • Bach MK, Brashler JR, Smith HW, Fitzpatrick FA, Sun FF, McGuire JC (1982) 6,9-deepoxy-6,9-(phenylimino)-6,8-prostaglandin I1, (U-60,257), a new inhibitor of leukotriene C and D synthesis: in vitro studies. Prostaglandins 23:759–771

    Google Scholar 

  • Baud L, Hagege J, Sraer J, Rondeau E, Perez J, Ardaillou R (1983) Reactive oxygen production by cultured rat glomerular mesangial cells during phagocytosis is associated with stimulation of lipoxygenase activity. J Exp Med 158: 1836–1852

    PubMed  CAS  Google Scholar 

  • Beierwaltes WH, Schryver S, Sanders E, Strand J, Romero JC (1982) Renin release selectively stimulated by prostaglandin I2 in isolated rat glomeruli. Am J Physiol 243: F276–F283

    PubMed  CAS  Google Scholar 

  • Bergstrom S, Dressier F, Krabisch L, Ryhage R, Sjovall J (1962a) The isolation and structure of a smooth muscle stimulating factor in normal sheeps and pig lungs. Ark Kemi 20: 63–66

    CAS  Google Scholar 

  • Bergrstrom S, Ryhage R, Samuelsson B, Sjovall J (1962b) The structure of prostaglandin E, Fj and F2. Acta Chem Scand 16 (2): 501–528

    Google Scholar 

  • Bjoro K Jr (1985) Effects of angiotensin I and II and their interactions with some prostanoids in perfused human umbilical arteries. Prostaglandins 30: 989–998

    PubMed  Google Scholar 

  • Bolger PM, Eisner GM, Ramwell PW, Slotkoff LM, Corey EJ (1978) Renal actions of prostacyclin. Nature 271: 467–469

    PubMed  CAS  Google Scholar 

  • Borgeat P, Samuelsson B (1979a) Arachidonic acid metabolism in polymorphonuclear leukocytes: unstable intermediate in formation of dihydroxy acids. Proc Natl Acad Sci USA 76: 3213–3217

    PubMed  CAS  Google Scholar 

  • Borgeat P, Samuelsson B (1979b) Transformation of arachidonic acid by rabbit polymorphonuclear leukoctyes: formation of a novel dihydroxyeicosatetraenoic acid. J Biol Chem 254: 2643–2646

    PubMed  CAS  Google Scholar 

  • Borgeat P, Hamberg M, Samuelsson B (1976) Transformation of arachidonic acid and homo-linolenic acid by rabbit polymorphonuclear leukocytes: monohydroxy acids from novel lipoxygenases. J Biol Chem 251: 7816–7820

    PubMed  CAS  Google Scholar 

  • Brocklehurst WE (1962) Slow-reacting substance and related compounds. Prog Allergy 6: 539–558

    PubMed  CAS  Google Scholar 

  • Brunkwall J, Bergqvist, Sjernquist U (1987) Prostacyclin and thromboxane release from the vessel wall—comparison between an incubation and a perfusion model. Prostaglandins 34: 467–476

    PubMed  CAS  Google Scholar 

  • Bunting S, Gryglewski R, Moncada S, Vane JR (1976) Arterial walls generate from prostaglandin endoperoxides a substance ( Prostaglandin X) which relaxes strips of mesenteric and coeliac arteries and inhibits platelet aggregation. Prostaglandins 12: 897–913

    Google Scholar 

  • Chan PS, Cervoni P (1985) Hypertension. In: Cohen MM (ed) Biological protection with prostaglandins. CRC, Boca Raton

    Google Scholar 

  • Chan AC, Leith MK (1981) Decreased prostacyclin synthesis in vitamin E-deficient rabbit aorta. Am J Clin Nutr 34: 2341–2347

    PubMed  CAS  Google Scholar 

  • Chiba S, Abe K, Kudo K, Omata K, Yasujima M, Sato K, Seino M, Imai Y, Sato M, Yoshinaga K (1984) Sex and age-related differences in the urinary excretion of TXB2 in normal human subjects: a possible pathophysiological role of TXA2 in the aged kidney. Prostaglandins Leukotrienes Med 16: 347–358

    CAS  Google Scholar 

  • Cooper CL, Shaffer JE, Malik KU (1985) Mechanism of action of angiotensin II and Bradykinin in prostaglandin synthesis and vascular tone in the isolated rat kidney. Circ Res 56: 97–108

    PubMed  CAS  Google Scholar 

  • Cramer EB, Pologe L, Pawloski NA, Cohn ZA, Scott WA (1983) Leukotriene C4 promotes prostacyclin synthesis by human endothelial cells. Proc Natl Acad Sci USA 80: 4109–4113

    PubMed  CAS  Google Scholar 

  • Data JL, Gerber JG, Crump WJ, Frölich JC, Hollifield JW, Nies AS (1978) The prostaglandin system: a role in canine baroreceptor control of renin release. Circ Res 42: 454–458

    PubMed  CAS  Google Scholar 

  • Desjardins-Giasson S, Gutkowska J, Garcia R, Genest J (1982) Effect of angiotensin II and norepinephrine on release of prostaglandins E2 and I2 by the perfused rat mesenteric artery. Prostaglandins 24: 105–114

    PubMed  CAS  Google Scholar 

  • Di Bona G (1986) Prostaglandins and non-steroidal anti-inflammatoty drugs. Am J Med 80: 12–21

    Google Scholar 

  • Dunn MJ, Hood VL (1977) Prostaglandins and the kidney. Am J Physiol 233: F169–F184

    CAS  Google Scholar 

  • Falardeau P, Robillard M, Martineau A (1985) Urinary levels of 2,3-dinor-6-oxo-PGFi alpha: a reliable index of the production of PGI2 in the spontaneously hypertensive rat. Prostaglandins 29: 621–628

    PubMed  CAS  Google Scholar 

  • Feigen LP (1984) Influence of renal lipoxygenase activity on the renal vascular response to arachidonic acid. J Pharmacol Exp Ther 228: 140–146

    PubMed  CAS  Google Scholar 

  • Feuerstein N, Foegh M, Ramwell PW (1981) Leukotrienes C4 and D4 induce prostaglandin and thromboxane release from rat peritoneal macrophages. Br J Pharmacol 72: 389–391

    PubMed  CAS  Google Scholar 

  • Fitzgerald GA, Fitzgerald DJ (1984) Biosynthesis of thromboxane A2 in renovascular hypertension. JAMA 251: 3121–3122

    PubMed  CAS  Google Scholar 

  • Frölich JC, Wilson TW, Sweetman BJ, Smigel M, Nies AS, Carr K, Watson JT, Oates JA (1975) Urinary prostaglandins—identification and origin. J Clin Invest 55: 763–770

    PubMed  Google Scholar 

  • Frölich JC, Filep J, Yoshizawa M, Förstermann U, Fejes-Toth G (1985) Role of eicosanoids in regulation of blood pressure. In: Hayaishi O, Yamamoto S (eds) Advances in prostaglandin, thromboxane, and leukotriene research, vol 15. Raven New York, pp 455–460

    Google Scholar 

  • Gerber JG, Keller RS, Nies JA (1979) Prostaglandins and renin release. Circ Res 44: 796–809

    PubMed  CAS  Google Scholar 

  • Gerritsen ME (1983) PGD2 formation in the vasculature: characteristics of rat tail vein prostaglandin endoperoxide—Disomerase. Prostaglandins 25: 105–120

    PubMed  CAS  Google Scholar 

  • Goldblatt MW (1935) Properties of human seminal plasma. J Physiol (Lond) 84: 208–218

    CAS  Google Scholar 

  • Grodzinska L, Gryglewski RJ (1980) Angiotensin-induced release of prostacyclin from perfused organs. Pharmacol Res Commun 12: 339–347

    PubMed  CAS  Google Scholar 

  • Groene HJ, Dunn MJ (1985) The role of prostaglandins in arterial hypertension: a critical review. Adv Nephrol 14: 241–272

    CAS  Google Scholar 

  • Gryglewski RJ (1979) Prostacyclin as a circulatory hormone. Biochem Pharmacol 28: 3161–3166

    PubMed  CAS  Google Scholar 

  • Gryglewski RJ, Panczenko B, Korbut R, Grodzinska L, Ocetkiewicz A (1975) Corticosteroids inhibit prostaglandin release from perfused mesenteric blood vessels of rabbit and from perfused lungs of sensitized guinea pig. Prostaglandins 10: 343–355

    PubMed  CAS  Google Scholar 

  • Gryglewski RJ, Splawinski J, Korbut R (1980) Endogenous mechanisms that regulate prostacyclin release. In: Samuelsson B, Ramwell PW, Paoletti R (eds) Advances in prostaglandin and thromboxane research, vol 7. Raven, New York, pp 777–787

    Google Scholar 

  • Gryglewski RJ, Moncada S, Palmer RMJ ( 1986 a) Bioassay of prostacyclin and endothelium derived relaxing factor ( EDRF) from porcine aortic endothelial cells. Br J Pharmacol 87: 685–694

    Google Scholar 

  • Hadjiagapiou C, Sprecher H, Kaduce TL, Figard PH, Spector AA (1987) Formation of 8-hydroxyhexadecatrienoic acid by vascular smooth muscle cells. Prostaglandins 34: 579–589

    PubMed  CAS  Google Scholar 

  • Ham EA, Egan RW, Soderman DD, Gale PA, Kuehl FA (1979) Peroxidase-dependent deactivation of prostacyclin synthetase. J Biol Chem 254: 2191–2194

    PubMed  CAS  Google Scholar 

  • Hamberg M (1976) On the formation of thromboxane B2 and 12L-hydroxy-5,8,10,14- Eicosatetraenoic acid (12 ho-20:4) in tissues from the guinea pig. Biochim Biophys Acta 431: 651–654

    PubMed  CAS  Google Scholar 

  • Hamberg M, Samuelsson B (1973) Detection and isolation of an endoperoxide intermediate in prostaglandin biosynthesis. Proc Natl Acad Sci USA 70: 899–903

    PubMed  CAS  Google Scholar 

  • Hamberg M, Samuelsson B (1974) Prostaglandin peroxides VII. Novel transformations of arachidonic acid in guinea pig lung. Biochem Biophys Res Comun 61: 942–949

    Google Scholar 

  • Hamberg M, Svensson J, Samuelsson B (1975) Prostaglandin endoperoxides: Novel transformations of arachidonic acid in human platelets. Proc Natl Acad Sci USA 71: 3400–3404

    Google Scholar 

  • Hassid AH, Sun F, Dunn MS (1982) Lipoxygenase activity in rat kidney glomeruli, glomerular epithelial cells and cortical tubules. J Biol Chem 257: 1024S–1029S

    Google Scholar 

  • Higg GA, Flower RJ, Vane JR (1979) A new approach to anti-inflammatory drugs. Biochem Pharmacol 28: 1959–1961

    Google Scholar 

  • Hornych A (1978) Prostaglandins and high blood pressure. Contrib Nephrol 12: 54–68

    PubMed  CAS  Google Scholar 

  • Hornych A (1980) Role of prostaglandins in control of blood pressure. In: Ramwell P (ed) Prostaglandin synthetase inhibitors: new clinical applications. Liss, New York, p 291

    Google Scholar 

  • Jackson EK, Branch RA, Oates JA (1982) Participation of prostaglandins in control of renin release. In: Oates JA (ed) Prostaglandins and the cardiovascular system. Raven, New York, p 255

    Google Scholar 

  • Jim K, Hassid A, Sun F, Dunn MJ (1982) Lipoxygenase activity in rat kidney glomeruli, glomerular epithelial cells and cortical tubules. J Biol Chem 257: 10294–10299

    PubMed  CAS  Google Scholar 

  • Johnson KL, Morton DR, Kumer JH, Gorman RR, McGuire JC, Sun FF, Whitacker N, Bunting S, Salomon J, Moncada S, Vane JR (1976) The chemical structure of prostaglandin X (prostacyclin). Prostaglandins 12: 915–928

    PubMed  CAS  Google Scholar 

  • Kahlen I, Schror K (1982) Mepindolol protection of prostacyclin formation. Subsequent increase in arachidonic acid-induced prostacyclin release in isolated guinea pig heart. Eur J Pharmacol 82: 81–84

    Google Scholar 

  • Kawaguchi H, Yasuda H (1986) Effect of platelet activating factor on arachidonic acid metabolism in renal epithelial cells. Biochim Biophys Acta 875: 525–534

    PubMed  CAS  Google Scholar 

  • Konieczkowski M, Dunn MJ, Stork JE, Hassid A (1983) Glomerular synthesis of prostaglandins and thromboxane in spontaneously hypertensive rats. Hypertension 5: 446–452

    PubMed  CAS  Google Scholar 

  • Larrue J, Razaka G, Daret D, Henri J, Rigaud M, Bricaud H (1985) Lipoxygenase derived products in cultured human aortic smooth muscle cells. In: Neri Serneri GG, McGiff JC, Paoletti R, Born GVR (eds) Advances in prostaglandin, thromboxane, and leukotriene research, vol 13. Raven, New York, pp 55–58

    Google Scholar 

  • Larsson C, Anggard E (1973) Increased juxtamedullary blood flow on stimulation of intrarenal prostaglandine biosynthesis. Eur J Pharmacol 25: 326–334

    Google Scholar 

  • Lawson D, Smith C, Katovich M et al. (1986) Cumulative contractile effects of leukotriene D4 and epinephrin on isolated rat aortic rings. Circulation 74: 11–15

    Google Scholar 

  • Levy JV (1977) Changes in systolic arterial blood pressure in normal and spontaneously hypertensive rats produced by acute administration of inhibitors of prostaglandin biosynthesis. Prostaglandins 13: 153

    PubMed  CAS  Google Scholar 

  • Lüscher TF, Vanhoutte PM (1986) Endothelium-dependent responses to platelets and serotonin in spontaneously hypertensive rats. Hypertension 8 [Suppl II]: 55–60

    Google Scholar 

  • MacLouf J, Fruteau DeLaclos B, Borgeat P (1982) Stimulation of leukotriene biosynthesis in human blood leukocytes by platelet-derived 12-hydroperoxy-icosatetraenoic acid. Proc Natl Acad Sci USA 79: 6042–6046

    Google Scholar 

  • Makhoul RG, Gewertz BL (1986) Renal prostaglandins. J Surg Res 40: 181–192

    PubMed  CAS  Google Scholar 

  • Mardin M, Busse W-D (1983) Effect of Nafazatrom on the lipoxygenase pathways in PMN leukocytes and RBL-1 cells. In: Piper PJ (ed) Leukotrienes and other lipoxygenase products. Research Studies, Chichester, pp 263–274

    Google Scholar 

  • McGiff JC (1981) Prostaglandins, prostacyclin, and thromboxanes. Annu Rev Pharmacol Toxicol 21: 479–509

    PubMed  CAS  Google Scholar 

  • McGiff JC, Nasjletti A (1976) Kinins, renal function and blood pressure regulation. Fed Proc 35: 172–174

    PubMed  CAS  Google Scholar 

  • McGiff JC, Quilley J (1982) Prostaglandins act as modulators and mediators of the vascular and renal actions of kinins. In: McConn R (ed) Role of chemical mediators in the pathophysiology of acute illness and injury. Raven, New York, p 37

    Google Scholar 

  • McGiff JC, Crowshaw K, Terragno NA, Lonigro AJ (1970) Renal prostaglandins: possible regulators of the renal actions of pressor hormones. Nature 225: 1255–1257

    Google Scholar 

  • McGiff JC, Iskowitz HD, Terragno NA (1975) The actions of bradykinin and eledoisin in the canine isolated kidney: relationship to prostaglandins. Clin Sci Mol Med 49: 125–131

    PubMed  CAS  Google Scholar 

  • McGiff JC, Spokas EG, Wong PY-K (1982) Stimulation of renin release by 6-oxoprostaglandin Ei and prostacyclin. Br J Pharmacol 75: 137–144

    Google Scholar 

  • Mehta J, Mehta P, Lawson D, Ostrowski N, Brigman L (1983) Influence of selective thromboxane synthetase blocker CGS-13080 on thromboxane and prostacyclin biosynthesis in whole blood: evidence for synthesis of prostacyclin by leukocytes from platelet-derived endoperoxides. J Lab Clin Med 106: 246

    Google Scholar 

  • Mehta P, Mehta J, Lawson D et al. (1986) Leukotrienes potentiate the effects of epinephrine and thrombin on human platelet aggregation. Thromb Res 41: 731–738

    PubMed  CAS  Google Scholar 

  • Mehta J, Lawson D, Mehta P et al. (1987) Leukotriene-induced relaxation of precontracted rat aortic rings: dependence on endothelial integrity. Clin Res 5: 573A

    Google Scholar 

  • Mehta J, Nichols WW, Mehta P (1988) Neutrophils as potential participants in acute myocardial ischemia: relevance to reperfusion. J Am Coll Cardiol 11: 1309–1316

    PubMed  CAS  Google Scholar 

  • Miller MJS, Pinto A, Mullane KM (1987) Impaired endothelium-dependent relaxations in rabbits subjected to aortic coarctation hypertension. Hypertension 10: 164–170

    PubMed  CAS  Google Scholar 

  • Morris HR, Taylor GW, Piper PJ, Tippins JR (1980a) Structure of slow-reacting substance of anaphylaxis from guinea-pig lung. Nature 285: 104–106

    PubMed  CAS  Google Scholar 

  • Morris HR, Taylor GW, Piper PJ, Samhoun MN, Tippins JR (1980b) Slow reacting substances (SRSs): the structure identification of SRSs from rat basophil leukaemia ( RBL-I) cells. Prostaglandins 19: 185–201

    Google Scholar 

  • Morrison AR, Pascoe N (1981) Metabolism of arachidonate through NADPH-dependent oxygenase of renal cortex. Proc Natl Acad Sci USA 78: 7375–7378

    PubMed  CAS  Google Scholar 

  • Morrison AR, Winokur TS, Brown WA (1982) Inhibition of soyabean lipoxygenase by mannitol. Biochem Biophys Res Commun 108: 1757–1762

    PubMed  CAS  Google Scholar 

  • Motomiya T, Yamazaki H (1981) Vascular smooth muscle reactivity to rabbit aorta contracting substance ( RCS) and production of prostacyclin-like substance in normotensive and hypertensive rats. Jpn Circ J 45: 680–686

    Google Scholar 

  • Mullane KM, Moncada S, Vane JR (1980) Prostacyclin release induced by bradykinin may contribute to the antihypertensive action of angiotensin-converting enzyme inhibitors. In: Samuelsson B, Ramwell PW, Paoletti R (eds) Advances in prostaglandin and thromboxane research, vol 7. Raven, New York, p 1159

    Google Scholar 

  • Nasjletti A, McGiff JC, Colina-Chourio J (1978) Interrelations of the renal kallikreinkinin system and renal prostaglandins in the conscious rat. Circ Res 43: 799–807

    PubMed  CAS  Google Scholar 

  • Needleman P, Kauffman AH, Douglas JR Jr, Johnson EM Jr, Marshall GR (1973) Specific stimulation and inhibition of renal prostaglandin release by angiotensin analogs. Am J Physiol 224: 1415–1419

    PubMed  CAS  Google Scholar 

  • Neri Serneri GG, Abbate R, Gensini GF, Panetta A, Casolo GC, Carini M (1983) TXA2 production by human arteries and veins. Prostaglandins 25: 753–766

    Google Scholar 

  • Nichols WW, Mehta J, Thompson L Donnelly WH (1988) Synergistic effects of LTC4 and TXA2 on coronary flow and myocardial function. Am J Physiol 255: H153–H159

    PubMed  CAS  Google Scholar 

  • Nugteren DH (1975) Arachidonate lipoxygenase in blood platelets. Biochim Biophys Acta 380: 299–307

    PubMed  CAS  Google Scholar 

  • Nugteren DH, Hazelhof E (1973) Isolation and properties of intermediates in prostaglandin biosynthesis. Biochim Biophys Acta 326: 448–461

    PubMed  CAS  Google Scholar 

  • Oates JA, Whorton AR, Gerkens JF, Branch RA, Hollifield JW, Frölich JC (1979) The participation of prostaglandins in the control of renin release. Fed Proc 38: 72–74

    PubMed  CAS  Google Scholar 

  • Ohde H, Ogihara T, Nakamaru M, Higaki J, Gotoh S, Masuo K, Ohtsuka A, Saeki S, Kumahara Y (1982) Effect of prostacyclin infusion on active and inactive renin release in the isolated perfused kidney. Life Sci 31: 3031–3035

    PubMed  CAS  Google Scholar 

  • Okuma M, Takayama H, Uchino H (1980) Generation of prostacyclin-like substance and lipid peroxidation in vitamin E-deficient rats. Prostaglandins 19: 527–536

    PubMed  CAS  Google Scholar 

  • Oliw EH, Oates JA (1981) Rabbit renal cortical microsomes metabolize arachidonic acid to trihydroxyeicosatrienoic acids. Prostaglandins 22: 863–871

    PubMed  CAS  Google Scholar 

  • Oliw EH, Lawson JA, Brash AR, Oates JA (1981) Arachidonic acid metabolism in rabbit renal cortex. J Biol Chem 256: 9924–9931

    PubMed  CAS  Google Scholar 

  • Pace-Asciak CR (1980) Prostacyclin and hypertension. Mater Med Pol 3: 181

    Google Scholar 

  • Pace-Asciak CR, Carrara MC, Rangaraj G, Nicolaou KC (1978) Enhanced formation of PGI2, a potent hypotensive substance, by aortic rings and homogenates of the spontaneously hypertensive rats. Prostaglandins 15: 1005–1012

    PubMed  CAS  Google Scholar 

  • Patak RV, Mookerjee KB, Bentzel CJ, Hysert PE, Babej M, Lee JB (1975) Antagonism of the effects of furosemide by indomethacin in normal and hypertensive man.

    Google Scholar 

  • Peach MJ, Loeb AL (1987) Changes in vascular endothelium and its function in systemic arterial hypertension. Am J Cardiol 14: 1101–1151

    Google Scholar 

  • Piper PJ, Galton SA (1984) Generation of leukotriene B4 and leukotriene E4 from porcine pulmonary artery. Prostaglandins 28: 905–914

    PubMed  CAS  Google Scholar 

  • Pipili E, Poyser NL (1982) Release of prostaglandins I2 and E2 from the perfused mesenteric arterial bed of normotensive and hypertensive rats. Effects of sympathetic nerve stimulation and norepinephrine administration. Prostaglandins 23: 543–549

    Google Scholar 

  • Randall RW, Eakins KE, Higgs GA, Salmon JA, Tateson JE (1980) Inhibition of arachidonic acid cyclo-oxygenase and lipoxygenase activities of leukocytes by indomethacin and compound BW 755C. Agents Actions 10: 553–555

    PubMed  CAS  Google Scholar 

  • Remuzzi G, Cavenaghi AE, Mecca G, Donati MB, DeGaetano G (1978) Human renal cortex generates prostacyclin-like activity. Thromb Res 12: 363–366

    Google Scholar 

  • Roman RJ, Lechene C (1981) Prostaglandin E2 and F2 reduces urea reabsorbtion from the rat collecting duct. Am J Physiol 241: F53

    PubMed  CAS  Google Scholar 

  • Samuelsson B (1963) Prostaglandins and related factors 17: the structure of prostaglandin E3. J Am Chem Soc 85: 1878–1879

    CAS  Google Scholar 

  • Samuelsson B (1964 a) Identification of a smooth muscle stimulating factor in bovine brain: prostaglandins and related factors, 25. Biochim Biophys Acta 84:218–219

    Google Scholar 

  • Samuelsson B (1964 b) Identification of prostaglandin F3a in bovine lung: prostaglandins and related factors, 26. Biochim Biophys Acta 84:707–713

    Google Scholar 

  • Samuelsson B (1983) Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science 220: 568–575

    PubMed  CAS  Google Scholar 

  • Satoh H, Hosono M, Satoh S (1984) Distinctive effect of angiotensin II on prostaglandin production in dog renal and femoral arteries. Prostaglandins 27: 807–820

    PubMed  CAS  Google Scholar 

  • Schölkens BA (1978) Antihypertensive effect of prostacyclin (PGI2) in experimental hypertension and its influence on plasma renin activity in rats. Prostaglandins Med 1: 359

    PubMed  Google Scholar 

  • Schölkens B, Steinbach R, Ganten D (1979) Blood pressure effects of endogenous brain angiotensin in rats are increased by inhibition of prostaglandin biosynthesis. Clin Sci 57: 271s–274s

    PubMed  Google Scholar 

  • Schwartzman M, Liberman E, Raz A (1981) Bradykinin and angiotensin II activation of arachidonic acid deacylation and prostaglandin E2 formation in rabbit kidney. J Biol Chem 256: 2329–2333

    PubMed  CAS  Google Scholar 

  • Schwertschlag U, Stahl T, Hackenthal E (1982) A comparison of the effects of prostacyclin and 6-keto-prostaglandin Ei on renin release in the isolated rat and rabbit kidney. Prostaglandins 23: 129–138

    PubMed  CAS  Google Scholar 

  • Schwertschlag U, Scherf H, Gerber JG, Mathias M, Nies AS (1987) L-platelet activating factor induces changes on renal vascular resistance, vascular reactivity and renin release in the isolated perfused rat kidney. Circ Res 60: 534–539

    PubMed  CAS  Google Scholar 

  • Seymour AA, Davis JO, Freeman RH, DeForrest JM, Williams GM (1979) Renin release filtering and non-filtering kidneys stimulated by PGI2 and PGD2. Am J Physiol 237: F285–290

    Google Scholar 

  • Shebuski RJ, Aiken JW (1980) Angiotensin II-induced renal prostacyclin release suppresses platelet aggregation in the anesthetized dogs. In: Samuelsson B, Ramwell PW, Paoletti R (eds) Advances in prostaglandin and thormboxane research, vol 7. Raven, New York, p 1149

    Google Scholar 

  • Sheng WY, Lysz TA, Wyche A, Needleman P (1983) Kinetic comparison and regulation of the cascade of microsomal enzymes involved in renal arachidonate and endoperoxide metabolism. J Biol Chem 258: 2188–2192

    PubMed  CAS  Google Scholar 

  • Simonson MS, Dunn MJ (1986) Leukotriene C4 and D4 contract rat glomerular mesangial cells. Kidney Int 30: 524–531

    PubMed  CAS  Google Scholar 

  • Simpson RU, Goodfriend TL (1984) Angiotensin and prostaglandin interactions in cultured kidney tubules. J Lab Clin Med 103: 255–271

    PubMed  CAS  Google Scholar 

  • Smith WL, Wilkin GP (1977) Immunochemistry of prostaglandin endoperoxide-forming cyclooxygenases: the detection of the cyclooxygenases in rat, rabbit and guinea-pig kidneys by immunofluorescence. Prostaglandins 13: 873–892

    PubMed  CAS  Google Scholar 

  • Solez K, Fox JA, Miller M et al. (1974) Effects of indomethacin on renal inner medullary plasma flow. Prostaglandins 7: 91

    PubMed  CAS  Google Scholar 

  • Soma M, Manku MS, Jenkins DK, Horrobin DF (1985) Prostaglandins and thromboxane outflow from the perfused mesenteric vascular bed in spontaneously hypertensive rats. Prostaglandins 29: 323–333

    PubMed  CAS  Google Scholar 

  • Sraer J, Rigaud M, Bens M, Rabinovitch H, Ardaillou R (1983) Metabolism of arachidonic acid via the lipoxygenase pathway in human and murine glomerguli. J Biol Chem 258: 4325–4330

    PubMed  CAS  Google Scholar 

  • Stokes JG (1982) Tubular actions of arachidonic acid metabolites. Effects on NaCl and water transport. In: Dunn MJ, Patrono C, Cinotti GA (eds) Prostaglandins and the kidney. Plenum, New York, pp 133–149

    Google Scholar 

  • Terragno NA, Terragno DA, McGiff JC (1977) Contribution of prostaglandins to the renal circulation in conscious, anaesthetized and laparotomized dogs. Circ Res 40: 590–595

    PubMed  CAS  Google Scholar 

  • Tucker BJ, Gushwa LC, Wilson CB, Blantz RC (1985) Effect of leukocyte depletion on glomerular dynamics during acute glomerular immune injury. Kidney Int 28: 28–35

    PubMed  CAS  Google Scholar 

  • Turk J, Wyche A, Needleman P (1980) Inactivation of vascular prostacyclin synthetase by platelet lipoxygenase products. Biochem Biophys Res Commun 95: 1628–1634

    PubMed  CAS  Google Scholar 

  • Uehara Y, Ishimitsu T, Ishii M, Sugimoto T (1987) Prostacyclin synthetase and phospholipases in the vascular wall of experimental hypertensive rats. Prostaglandins 34: 423–432

    PubMed  CAS  Google Scholar 

  • Vlasses PH, Ferguson RK, Smith JB, Rotmensch HH, Swanson BN (1983) Urinary excretion of prostacyclin and thromboxane A2 metabolites after angiotensin converting enzyme inhibition in hypertensive patients. Prostaglandins Leukotrienes Med 11: 143–150

    CAS  Google Scholar 

  • von Euler US (1934) Zur Kenntnis der pharmakologischen Wirkungen von Nativsekreten und Extraktenmännlicher accessorischer Geschlechtsdrüsen. Naunyn-Schmiedeberg’s Arch Exp Pathol Pharmacol 175: 78–84

    Google Scholar 

  • von Euler US (1935) kurzwissenschaftliche Mitteilungen über die spezifische blutdruck—senkende Substanz des menschlichen Prostata—und Samenblasensekrets. Klin Wochenschr 14:1182–1184

    Google Scholar 

  • Walker LA, Whorton AR, Smigel M, France R, Frölich JC (1978) Antiduretic hormone increases renal prostaglandin synthesis in vivo. Am J Physiol 235: F180–F185

    PubMed  CAS  Google Scholar 

  • Wargovich T, Mehta J, Nichols WW, Pepine CJ, Conti CR (1985) Reduction in blood flow in normal and narrowed coronary arteries of dogs by leukotriene C4. Am J Coll Cardiol 6: 1047–1051

    CAS  Google Scholar 

  • Weber PC (1978) Renal prostaglandins in the control of renin. Contrib Nephrol 12: 92–103

    PubMed  CAS  Google Scholar 

  • Weber PC, Larsson C, Anggard E, Hamberg M, Corey EJ, Nicolaou KC, Samuelsson B (1976) Stimulation of renin release from rabbit renal cortex by arachidonic acid and prostaglandin endoperoxides. Circ Res 39 (6): 868–874

    CAS  Google Scholar 

  • Weller PF, Lee CW, Foster DW, Corey EJ, Austen KF, Lewis RA (1983) Generation and metabolism of 5-lipoxygenase pathway leukotrienes by human eosinophils: predominant production of leukotriene C4. Proc Natl Acad Sci USA 80: 7626–7630

    PubMed  CAS  Google Scholar 

  • Werning C, Vetter W, Weidmann P, Schweikert HU, Stiel D, Siegenthaler W (1971) Effect of prostaglandin E! on renin in the dog. Am J Physiol 220: 852–856

    PubMed  CAS  Google Scholar 

  • Wong PY-K, McGiff JC, Cagen L, Malik KU, Sun FF (1978) Metabolism of prostacyclin in the rabbit kidney. J Biol Chem 254: 12–14

    Google Scholar 

  • Wong PY-K, Spur B, Hejny P, Chao PH-W, Lam BK (1987) Biosynthesis and metabolism of leukotrienes in response to glomeruli and neutrophil interaction of genetically hypertensive rats. In: Samuelsson B, Paoletti R, Ramwell PW (eds) Advances in prostaglandin, thromboxane, and leukotriene research, vol 17B. Raven, New York, p 736

    Google Scholar 

  • Yannagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332: 411–415

    Google Scholar 

  • Ylitalo P, Pitkäjärvi T, Metsä-Ketelä T, Vapaatalo H (1978) The effect of inhibition of prostaglandin synthesis on plasma renin activity and blood pressure in essential hypertension. Prostaglandins Med 1: 479–488

    PubMed  CAS  Google Scholar 

  • Yoshimoto T, Yokoyama C, Ochi K, Yamamoto S, Maki Y, Ashida Y, Terao S, Shiraishi M (1982) 2,3,5-trimethyl-6-(12-hydroxy-5,10-dodecadiynyl)-1,4-benzoquinone (AA861), a selective inhibitor of the 5-lipoxygenase reaction and the biosynthesis of slow-reacting substance of anaphylaxis. Biochim Biophys Acta 713:470–473

    Google Scholar 

  • Zipser RD, Smorlesi C (1984) Regulation of urinary thromboxane B2 in man: influence of urinary flow rate and tubular transport. Prostaglandins 27: 257–271

    PubMed  CAS  Google Scholar 

  • Zusman RM, Keiser HR (1977) Prostaglandin E2 biosynthesis by rabbit renomedullary interstitial cells in tissue culture: mechanism of stimulation by angiotensin II, bradykinin and arginine vasopressin. J Biol Chem 252: 2069–2071

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schröder, G., Gryglewski, R., Mehta, J., Stock, G. (1990). Prostaglandins. In: Ganten, D., Mulrow, P.J. (eds) Pharmacology of Antihypertensive Therapeutics. Handbook of Experimental Pharmacology, vol 93 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74209-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74209-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74211-8

  • Online ISBN: 978-3-642-74209-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics