Advertisement

Signal Transduction in Halobacteria

  • D. Oesterhelt
  • W. Marwan
Conference paper
Part of the NATO ASI Series book series (volume 29)

Abstract

The search for photosynthetically efficient green light and the avoidance of inefficient blue light or lethal ultra-violet light allows halobacteria to survive by means of photosynthesis in a natural habitat of brines and salt ponds under strong sunlight. The entire photobiochemistry of these archaebacteria is based upon the activation of retinal proteins. Two light-driven ion pumps, bacteriorhodopsin as a proton pump and halorhodopsin as a chloride pump, representlight energy converters that power the energy-driven processes of the cell (Lanyi, 1984). Two light sensors, sensory rhodopsin and protein P480 (also called SR-II or phoborhodopsin) mediate “colour” vision that aids the cell in finding the optimal photosynthetic environment (Spudich & Bogomolni, 1984; Takahashi et al., 1985; Marwan & Oesterhelt, 1987).

Keywords

Retinal Protein Flagellar Motor Microbeam Irradiation Sensory Rhodopsin Halobacterium Halobium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alam M, Oesterhelt D (1984) Morphology, function and isolation of halobacterial flagella. J Mol Biol 176: 459–475PubMedCrossRefGoogle Scholar
  2. Berg HCf Brown DA (1972) Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239: 500–504PubMedCrossRefGoogle Scholar
  3. Block SM, Segall JE, Berg HC (1983) Adaption kinetics in bacterial Chemotaxis. J Bacteriol 154: 312–323PubMedGoogle Scholar
  4. Bogomolni RA, Spudich JL (1982) Indification of a third rhodopsin-like pigment in phototactic Halobacterium halobium. Proc Natl Acad Sei USA 79: 6250–6254CrossRefGoogle Scholar
  5. Forterre P, Elie C, Kohiyama M (1984) Aphidicolin inhibits growth and DNA synthesis in halophilic archaebacteria. J Bacteriol 159: 800–802PubMedGoogle Scholar
  6. Hecht S, Shlaer S, Pirenne MH (1942) Energy, quanta and vision. J Gen Physiol 25: 819–840PubMedCrossRefGoogle Scholar
  7. Hegemann P, Marwan W (1988) Single photons are sufficient to trigger movement responses in Chlamydomonas reinhardtii. Photochem Photobiol 48: 99–106CrossRefGoogle Scholar
  8. Hildebrand E, Dencher N (1975) Two photosystems controlling behavioural responses of Halobacterium halobium. Nature 257: 46–48PubMedCrossRefGoogle Scholar
  9. Houwink AL (1956) Flagella, gas vacuoles and cell-wall structure in Halobacterium halobium; an electron microscope study. J Gen Microbiol 15: 146–150PubMedGoogle Scholar
  10. Lanyi J (1984) Bacteriorhodopsin and related light-energy converters. In: Ernster L (ed): Comparative biochemistry bioenergetics. Elsevier Amsterdam:315–335Google Scholar
  11. Macnab RM (1976) Examination of bacterial flagellation by dark-field microscopy. J Clin Microbiol 4: 258–265PubMedGoogle Scholar
  12. Macnab RM, Ornston MK (1977) Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilisation of an alternative quaternary structure by mechanical force. J Mol Biol 112: 1–30Google Scholar
  13. Marwan W, Alam M, Oesterhelt D (1987) Die Geisseibewegung halophiler Bakterien. Naturwiss 74: 585–591CrossRefGoogle Scholar
  14. Marwan W, Hegemann P, Oesterhelt D (1988) Single photon detection in an archaebacterium. J Mol Biol 199: 663–664PubMedCrossRefGoogle Scholar
  15. Marwan W, Oesterhelt D (1987) Signal formation in the halobacterial photophobic response mediated by a fourth retinal protein (P480). J Mol Biol 195: 333–342PubMedCrossRefGoogle Scholar
  16. Oesterhelt D, Krippahl G (1983) Phototrophic growth of halo-bacteria and its use for isolation of photosynthetically deficient mutants. Ann Microbiol (Inst Pasteur) 134: 137–150CrossRefGoogle Scholar
  17. Oesterhelt Df Marwan W (1987) Change of membrane potential is not a component of the photophobic transduction chain in Halobacterlum halobium. J Bacterid 169: 3515–3520Google Scholar
  18. Otomo I, Marwan W, Oesterhelt D, Desel H, Uhl R (1989) Biosynthesis of the two halobacterial light sensors P480 and sensory rhodopsin and variation in gain of their signal transduction chains. J Bacteriol (submitted)Google Scholar
  19. Schegk ES, Oesterhelt D (1988) Isolation of a prokaryotic photoreceptor: sensory rhodopsin from halobacteria. EMBO J 7: 2925–2933PubMedGoogle Scholar
  20. Schimz A, Hildebrand E (1985) Response regulation and sensory control in Halobacterlum halobium based on an oscillator. Nature 317: 641–643CrossRefGoogle Scholar
  21. Segall JE, Manson MD, Berg H (1982) Signal processing times in bacterial chemotaxis. Nature 296: 855–857PubMedCrossRefGoogle Scholar
  22. Spudich E, Spudich JL (1982) Control of transmembrane ion fluxes to select halorhodopsin-deficient and other energy-transduction mutants of Halobacterlum halobium. Proc Natl Acad Sci USA 79: 4308–4312PubMedCrossRefGoogle Scholar
  23. Spudich JL, Bogomolni RA (1984) Mechanism of colour dis-crimination by a bacterial sensory rhodopsin. Nature 312: 509–513PubMedCrossRefGoogle Scholar
  24. Stryer L (1986) Cyclic GMP cascade in vision. Ann Rev Neurosci 9: 87–119PubMedCrossRefGoogle Scholar
  25. Takahashi T, Tomioka H, Kamo N, Kobatake Y (1985) A photo-system other than PS 370 also mediates the negative phototaxis of Halobacterlum halobium. FEMS Microbiol Lett 28: 161–164CrossRefGoogle Scholar
  26. Wagner G, Oesterhelt D, Krippahl G, Lanyi JK (1981) Bioenergetic role of halorhodopsin in Halobacterlum halobium cells. FEBS Lett 131: 341–345CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • D. Oesterhelt
    • 1
  • W. Marwan
    • 1
  1. 1.Max-Planck-Institut für BiochemieMartinsriedFederal Republic of Germany

Personalised recommendations