Signal Transduction in Halobacteria

  • D. Oesterhelt
  • W. Marwan
Conference paper
Part of the NATO ASI Series book series (volume 29)


The search for photosynthetically efficient green light and the avoidance of inefficient blue light or lethal ultra-violet light allows halobacteria to survive by means of photosynthesis in a natural habitat of brines and salt ponds under strong sunlight. The entire photobiochemistry of these archaebacteria is based upon the activation of retinal proteins. Two light-driven ion pumps, bacteriorhodopsin as a proton pump and halorhodopsin as a chloride pump, representlight energy converters that power the energy-driven processes of the cell (Lanyi, 1984). Two light sensors, sensory rhodopsin and protein P480 (also called SR-II or phoborhodopsin) mediate “colour” vision that aids the cell in finding the optimal photosynthetic environment (Spudich & Bogomolni, 1984; Takahashi et al., 1985; Marwan & Oesterhelt, 1987).


Sucrose Fermentation Filtration Nicotine Respiration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alam M, Oesterhelt D (1984) Morphology, function and isolation of halobacterial flagella. J Mol Biol 176: 459–475PubMedCrossRefGoogle Scholar
  2. Berg HCf Brown DA (1972) Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239: 500–504PubMedCrossRefGoogle Scholar
  3. Block SM, Segall JE, Berg HC (1983) Adaption kinetics in bacterial Chemotaxis. J Bacteriol 154: 312–323PubMedGoogle Scholar
  4. Bogomolni RA, Spudich JL (1982) Indification of a third rhodopsin-like pigment in phototactic Halobacterium halobium. Proc Natl Acad Sei USA 79: 6250–6254CrossRefGoogle Scholar
  5. Forterre P, Elie C, Kohiyama M (1984) Aphidicolin inhibits growth and DNA synthesis in halophilic archaebacteria. J Bacteriol 159: 800–802PubMedGoogle Scholar
  6. Hecht S, Shlaer S, Pirenne MH (1942) Energy, quanta and vision. J Gen Physiol 25: 819–840PubMedCrossRefGoogle Scholar
  7. Hegemann P, Marwan W (1988) Single photons are sufficient to trigger movement responses in Chlamydomonas reinhardtii. Photochem Photobiol 48: 99–106CrossRefGoogle Scholar
  8. Hildebrand E, Dencher N (1975) Two photosystems controlling behavioural responses of Halobacterium halobium. Nature 257: 46–48PubMedCrossRefGoogle Scholar
  9. Houwink AL (1956) Flagella, gas vacuoles and cell-wall structure in Halobacterium halobium; an electron microscope study. J Gen Microbiol 15: 146–150PubMedGoogle Scholar
  10. Lanyi J (1984) Bacteriorhodopsin and related light-energy converters. In: Ernster L (ed): Comparative biochemistry bioenergetics. Elsevier Amsterdam:315–335Google Scholar
  11. Macnab RM (1976) Examination of bacterial flagellation by dark-field microscopy. J Clin Microbiol 4: 258–265PubMedGoogle Scholar
  12. Macnab RM, Ornston MK (1977) Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilisation of an alternative quaternary structure by mechanical force. J Mol Biol 112: 1–30Google Scholar
  13. Marwan W, Alam M, Oesterhelt D (1987) Die Geisseibewegung halophiler Bakterien. Naturwiss 74: 585–591CrossRefGoogle Scholar
  14. Marwan W, Hegemann P, Oesterhelt D (1988) Single photon detection in an archaebacterium. J Mol Biol 199: 663–664PubMedCrossRefGoogle Scholar
  15. Marwan W, Oesterhelt D (1987) Signal formation in the halobacterial photophobic response mediated by a fourth retinal protein (P480). J Mol Biol 195: 333–342PubMedCrossRefGoogle Scholar
  16. Oesterhelt D, Krippahl G (1983) Phototrophic growth of halo-bacteria and its use for isolation of photosynthetically deficient mutants. Ann Microbiol (Inst Pasteur) 134: 137–150CrossRefGoogle Scholar
  17. Oesterhelt Df Marwan W (1987) Change of membrane potential is not a component of the photophobic transduction chain in Halobacterlum halobium. J Bacterid 169: 3515–3520Google Scholar
  18. Otomo I, Marwan W, Oesterhelt D, Desel H, Uhl R (1989) Biosynthesis of the two halobacterial light sensors P480 and sensory rhodopsin and variation in gain of their signal transduction chains. J Bacteriol (submitted)Google Scholar
  19. Schegk ES, Oesterhelt D (1988) Isolation of a prokaryotic photoreceptor: sensory rhodopsin from halobacteria. EMBO J 7: 2925–2933PubMedGoogle Scholar
  20. Schimz A, Hildebrand E (1985) Response regulation and sensory control in Halobacterlum halobium based on an oscillator. Nature 317: 641–643CrossRefGoogle Scholar
  21. Segall JE, Manson MD, Berg H (1982) Signal processing times in bacterial chemotaxis. Nature 296: 855–857PubMedCrossRefGoogle Scholar
  22. Spudich E, Spudich JL (1982) Control of transmembrane ion fluxes to select halorhodopsin-deficient and other energy-transduction mutants of Halobacterlum halobium. Proc Natl Acad Sci USA 79: 4308–4312PubMedCrossRefGoogle Scholar
  23. Spudich JL, Bogomolni RA (1984) Mechanism of colour dis-crimination by a bacterial sensory rhodopsin. Nature 312: 509–513PubMedCrossRefGoogle Scholar
  24. Stryer L (1986) Cyclic GMP cascade in vision. Ann Rev Neurosci 9: 87–119PubMedCrossRefGoogle Scholar
  25. Takahashi T, Tomioka H, Kamo N, Kobatake Y (1985) A photo-system other than PS 370 also mediates the negative phototaxis of Halobacterlum halobium. FEMS Microbiol Lett 28: 161–164CrossRefGoogle Scholar
  26. Wagner G, Oesterhelt D, Krippahl G, Lanyi JK (1981) Bioenergetic role of halorhodopsin in Halobacterlum halobium cells. FEBS Lett 131: 341–345CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1989

Authors and Affiliations

  • D. Oesterhelt
    • 1
  • W. Marwan
    • 1
  1. 1.Max-Planck-Institut für BiochemieMartinsriedFederal Republic of Germany

Personalised recommendations